Nonbenzenoid Aromatic Systems. 14. ${ }^{1 a}$ Buffered
 Acetolyses of Certain 2-, 3-, 4-, 5-, 6-, and 7-Substituted 2-(1-Azulyl)ethyl Tosylates

Richard N. McDonald,* James M. Richmond, James R. Curtis, Herbert E. Petty, and R. Joseph Mobley
Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506. Received January 31, 1977

Abstract

The kinetics of buffered acetolysis of 2-(1-azulyl)ethyl tosylate (1-OTs) and certain 2-($\left.\mathrm{OCH}_{3}, \mathrm{CH}_{3}, \mathrm{Cl}, \mathrm{Br}, \mathrm{CN}\right), 3-$ $\left(\mathrm{OCH}_{3}, \mathrm{CH}_{3}, \mathrm{SCH}_{3}, \mathrm{Br}, \mathrm{COCH}_{3}, \mathrm{CN}, \mathrm{NO}_{2}\right), 4-\left(\mathrm{CH}_{3}\right), 5-\left(\mathrm{CH}_{3}, \mathrm{Br}, \mathrm{CN}\right), 6-\left(\mathrm{OCH}_{3}, \mathrm{CH} 3, \mathrm{Br}, \mathrm{CN}\right)$, and 7 -substituted $\left(\mathrm{CH}_{3}, \mathrm{Br}, \mathrm{CN}\right)$ derivatives of $\mathbf{1 - O T s}$ are reported. Buffered acetolysis of specific side-chain deuterium labeled compounds demonstrates that 1 -OTs solvolyzes complelely by the $F k_{\Delta}$ pathway without ion-pair return $(F=1.0)$. Similar results with $3-\mathrm{NO}_{2}$-1-OTs show the presence of $2 \pm 1 \%$ of the solvent assisted, k_{s}, pathway, and about 12% ion-pair return $(F \simeq 0.81)$ after 1 solvolytic half-life. The kinetic secondary α-deuterium isotope effects were determined for 1-OTs- $\alpha, \alpha-d_{2}$ and $3-\mathrm{NO}_{2}$-1-OTs$\alpha, \alpha-d_{2}$ to be $k_{\mathrm{H}} / k_{\mathrm{D}}=1.09$ and 1.08 , respectively, per deuterium at $35^{\circ} \mathrm{C}$. The individual site substituent effects were found to be well correlated by $\sigma_{p}{ }^{\circ}$ constants, and $\rho=-4.4$ calculated at the 2 position while ρ varied between -3.0 and -3.6 at the ring $3,5,6$, and 7 positions. Using a Yukawa-Tsuno-Sawada linear free energy relationship a single correlation of the combined 3-, 5-, 6-, and 7-X-1-OTs ($\sigma_{p}{ }^{\circ}$) and the m - and $p-X$-neophyl brosylate acetolysis ($\sigma_{m}{ }^{\circ}$ for $m-X$ and $\left[\sigma_{p}{ }^{\circ}+0.69\left(\sigma_{p}{ }^{+}\right.\right.$ $\left.-\sigma_{p}{ }^{\circ}\right)$] for $\left.p-X\right)$ substituent effect data $\left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ was derived with $\rho=-3.20 \pm 0.14$. The reported para-substituent effects for the $F k_{\Delta}$ process of 2-phenylethyl tosylate are also fitted by this correlation. Excellent correlation was found for ring substituent effects on the $\mathrm{p} K_{\mathrm{a}}$ of 1-azuloic acid $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}, 25^{\circ} \mathrm{C}\right)$ and buffered acetolysis of $1-\mathrm{OTs}\left(25^{\circ} \mathrm{C}\right)$ making the $1-\mathrm{azuly}$ l ring a truly "Hammett-type" aromatic system. Of the conclusions reached in this paper, those of general significance include (1) a single reaction constant ($\rho=-3.2$) is found for β-arylethyl arenesulfonate acetolyses with relative aryl reactivities (X $=\mathrm{H}$ in each case) over a range of 10^{5}, thus we conclude that variations in ρ for a given reaction type cannot be interpreted as meaning late vs. early transition state structures, and (2) the lack of any significant change in secondary α-deuterium isotope effect for 2-arylethyl arenesulfonate solvolyses also eliminates use of this kinetic effect as a useful probe of early vs. late transition state structures in these systems. However, the α-deuterium effects may be useful in differentiating between types of participation, e.g., in 2-ferrocenylethyl tosylate acetolysis. It is suggested the ortho- and para-substituent constants in related benzene derivatives are given by the expression $\sigma_{o}{ }^{\circ}=1.4 \sigma_{\rho}{ }^{\circ}$ when steric effects are absent.

Several years ago, we began a program to evalute the nonbenzenoid aromatic azulene ring system compared to benzene in several different types of reactions. Our initial choices of reaction types were to examine the effects of these two aromatic rings as interactive substituents with an attached reaction center. To this end we have examined the $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of azuloic acids, ${ }^{2}$ ring substituent effects on the $\mathrm{p} K_{\mathrm{a}}$ of 1 -azuloic acid, ${ }^{3}$ and buffered acetolyses of 2-(2-, ${ }^{4}$ 2-(4-, ${ }^{5}$ and 2-(6-azulyl)ethyl arenesulfonates. ${ }^{5}$ The processes involved in direct attack on the azulene ring by some nucleophilic anions to form Meisenheimer type species have also been published. ${ }^{6}$
We now wish to report our results of ring substituent effects on the buffered acetolysis of 2-(1-azulyl)ethyl tosylate (1OTs). A number of these same substituents were examined in their effects on the $\mathrm{p} K_{\mathrm{a}}$ of 1 -azuloic acid. ${ }^{3}$ While it is now generally agreed that aryl participation (k_{Δ} pathway) is a contributing or the sole reaction process in the solvolysis of derivatives of β-arylethanols, ${ }^{7,8}$ it was felt that several questions could be addressed by such a study, some of which were specific to azulene chemistry while others would be of general interest in the area of linear free energy relationships (LFER). Such questions include (1) would ionization to or destruction of the intermediate be rate determining, (2) would ion-pair return be a major problem, (3) what σ constants would be appropriate at the variety of ring sites available in 1-OTs, (4) what ρ value(s) would be calculated from these various substituent effects, and (5) how would this fit in with the idea of LFERs being useful in deciding early vs. late transition state structures in the same reaction type, (6) are secondary α-deuterium isotope effects useful in defining early vs. late transition states in the solvolysis of β-arylethyl arenesulfonates, and (7) would the azulene ring 3 position behave as a benzene meta position? Each of these questions will be dealt with in the discussion section.

Substrate Synthesis. The syntheses of 2-, 3-, and 6 -substituted derivatives of $1-\mathrm{OH}, 1-\mathrm{OAc}$, and $1-\mathrm{OTs}$, and of $5(7)$ -$\mathrm{CH}_{3}-1-\mathrm{OH},{ }^{10,11}$ have been reported. $4-\mathrm{CH}_{3}-1-\mathrm{OH}$ was prepared by Anderson's stepwise construction of the β-ethanol side chain (N, N-dimethylaminomethylation, quaternerization, ${ }^{-} \mathrm{CN}$ displacement, hydrolysis, and diborane reduction). ${ }^{12}$ N, N-Dimethylaminomethylation of 4 -methylazulene gave $1-(N, N$-dimethylaminomethyl)-4. (2, 49\%) and -8-methylazulene (3; 5\%), and 1,3-bis(N, N-dimethylaminomethyl)4 -methylazulene (4, 2\%). Each was readily identified by the chemical shift of the ring CCH_{3} group: 2, $\tau 7.16 ; 3, \tau 6.77 ; 4$, $\tau 6.79$. Direct β-hydroxyethylation ${ }^{10}$ of 4 -methylazulene gave a larger percentage of C_{3} to C_{1} substitution than did the above reaction, and we were unable to separate these isomers.

Synthesis of the individual 5 - and $7-\mathrm{Br}-1-\mathrm{OTs}$, and 5 - and 7-CN-1-OTs began with diethyl 6 -aminoazulene-1,3-dicarboxylate (5) available from the liquid ammonia amination of diethyl 6-bromoazulene-1,3-dicarboxylate. ${ }^{9,14} N$-Bromosuccinimide (NBS) bromination of 5 in chloroform solution led selectively to the 5 -bromo derivative 6 . In dimethylformamide (DMF), reaction of 5 and NBS selectively produced the 2 bromo derivative, diethyl 6 -amino-2-bromoazulene-1,3-dicarboxylate.

Initial attempts at protiodeamination of 6 were unsuccessful. To accomplish the $6 \rightarrow 7$ conversion, we developed a method of diazotization in the presence of p-hydroquinone to serve as an in situ reducing agent. ${ }^{15}$ Using this method an 88% (100% net) yield of 7 was obtained.

With the hurdles of $5 \rightarrow 6 \rightarrow 7$ in Scheme I overcome, the conversions of $7 \rightarrow \mathbf{8} \rightarrow 5(7)$ - $\mathrm{Br}-1-\mathrm{OAc}$ proceeded as expected. After chromatographic purification of the $5(7)-\mathrm{Br}-1-\mathrm{OAc}$ mixture, it was observed that $5-\mathrm{Br}-1-\mathrm{OAc}$ crystallized from carbon tetrachloride-hexane. Evaporation of the mother liquor (mainly $7-\mathrm{Br}-1-\mathrm{OAc}$), base hydrolysis, and chromatography

Scheme I

5

6

7

a, $\mathrm{NBS}, \mathrm{CHCl}_{3} ;$ b, i - $\mathrm{AmONO}, \mathrm{H}_{2} \mathrm{SO}_{4}$, dioxane, p-hydroquinone; c , (1) $\mathrm{KOH}, \mathrm{EtOH}-\mathrm{H}_{\mathrm{O}} \mathrm{O}$, (2) H^{+}, (3) $270^{\circ} \mathrm{C}$ (100 mm); d, (1) ethylene oxide, $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}(2) \mathrm{Ac}_{2} \mathrm{O}$, pyridine; e, $\mathrm{KOH}, \mathrm{CH}_{3} \mathrm{OH} ; \mathrm{f}$, $\mathrm{TsCl}, \mathrm{NaOH}, \mathrm{THF}, 0^{\circ} \mathrm{C} ; \mathrm{g}, \mathrm{CuCN}, \mathrm{DMF}, \Delta$
followed by recrystallization of the product gave $7-\mathrm{Br}-1-\mathrm{OH}$ containing $5-10 \%$ of $5-\mathrm{Br}-1-\mathrm{OH}$. The $5-$ and $7-\mathrm{Br}-1-\mathrm{OAc}$ isomers were separately treated with cuprous cyanide in DMF to give the 5-and 7-CN-1-OAc isomers, respectively. Standard procedures were then carried out for hydrolysis of the acetates to the alcohols which were then converted to their respective tosylate esters.
The assignment of structures to these 5 - and 7 -bromo isomers was based on their NMR spectra in the τ 1.5-2.1 region where the C_{4} and $\mathrm{C}_{8} \mathrm{H}$'s absorb. This information is shown below with the chemical shifts measured from a mixture of the two isomers in carbon tetrachloride. Since we expect the bromine substituent effect of $\mathrm{C}_{4} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$, and $\mathrm{C}_{8} \mathrm{H}$ and C_{4} H of $5-\mathrm{Br}-1-\mathrm{OAc}$ and $7-\mathrm{Br}-1-\mathrm{OAc}$, respectively, to be the same within each pair of protons, the only difference in the two isomers is the peri-deshielding effect of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$ group on the $\mathrm{C}_{8} \mathrm{H} .{ }^{19}$ This assignment was verified when we
$\tau 1.96$
(d, $J=9 \mathrm{~Hz}$)

$\tau 1.66$
(d, $J=2 \mathrm{~Hz}$)
$\tau 1.60$
(d, $J=2 \mathrm{~Hz}$)

$\tau 2.03$
(d, $J=9 \mathrm{~Hz}$)
found about 10% NOE enhancement of $\mathrm{C}_{8} \mathrm{H}(J=9.2 \mathrm{~Hz})$ in the cyano isomer ($5-\mathrm{CN}-1-\mathrm{OAc}$) derived from $5-\mathrm{Br}-1-\mathrm{OAc}$ when the $\beta-\mathrm{CH}_{2}$ of the side chain was irradiated.

Results and Discussion

Buffered Acetolysis Kinetics. Buffered acetolysis conditions ($1.2 / 1.0$ equivalent ratio of $\mathrm{KOAc} /$ substrate) were used throughout this investigation since most azulenes are readily protonated by strong acids at their 1 or 3 positions. Partial ring protonation of 1-OAc was observed in formic acid, with and without added formate buffer. The majority of kinetic runs were followed using the conductivity method previously described ${ }^{1 \mathrm{a}, 4,5,17}$ with about $1 \times 10^{-3} \mathrm{M}$ in substrate concentration. The rate constants and activation parameters for these derivatives of 1-OTs are listed in Table I.

About one-half of the substituted X-1-OTs's listed in Table I were acetolyzed as their $1: 1$ 1,3,5-trinitrobenzene (TNB) derivatives. This was done since these tosylate esters were obtained as oils or unstable solids, and formation of their TNB complexes led to crystalline solids with good stability. We felt that such complexes would be fully dissociated in the buffered acetolysis medium and offer no difficulty in the kinetic and preparative acetolysis studies. To check this point, an extra molar equivalent of TNB was added to a kinetic run of 1 -OTs-TNB. The average titrimetric rate constant, k_{t}, from two runs under these conditions was $(6.14 \pm 0.07) \times 10^{-5} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$, identical with that listed in Table I.

Infinity ($10 t_{1 / 2}$) titers of the tosylate buffered acetolyses in Table I were $92-100 \%$ of the theoretical value. Preparative acetolyses for $10 t_{1 / 2}$ followed by workup and chromatography gave $90-100 \%$ of the respective X-1-OAc. The single deviation from this behavior was observed with 3-SCN-1-OTs-TNB. With this tosylate ester the infinity titers were $77-80 \%$ of theory. The preparative acetolysis of 3-SCN-1-OTs.TNB gave 3-SCN-1-OAc in 77% yield along with an unknown yellow, water-soluble material. The yellow material was believed derived from the tosylate since $3-\mathrm{SCN}-1-\mathrm{OAc}$ was shown to be stable to the acetolysis conditions. Whatever the nature of this side reaction is, it did not influence the kinetics as evidenced by a linear rate plot using the infinity titer in the calculations (infinity points were used throughout this investigation).

Side-Chain Deuterium Scrambling Results. The substituent group effects and LFER correlation (discussed later) of the data in Table I point to the ionization step as being rate limiting. However, Grovenstein and Schmalstieg ${ }^{18}$ showed that in the iodination of azulene destruction of the 1 -iodoazulenium ion intermediate $\left(k_{2}\right)$ was rate limiting. It was, therefore, considered essential to establish this point by specific side-chain deuterium labeling. These results would also allow us to determine the extent of return from the expected 1 -ethyleneazulenium tosylate ion pair (9).

1-OTs- $\alpha, \alpha-d_{2}$ was prepared by perdeuteriodiborane reduction of 1-azulylacetic acid. ${ }^{9}$ Nitration of 1-OAc- $\alpha, \alpha-d_{2}$ gave $3-\mathrm{NO}_{2}-1-\mathrm{OAc}-\alpha, \alpha-d_{2}$ which was converted to $3-\mathrm{NO}_{2}$ -$1-\mathrm{OTs}-\alpha, \alpha-d_{2}$. The scrambling results from these two labeled tosylate esters after 1 and 10 acetolysis half-lives are summarized in Table II.

The observations of complete methylene scrambling in 1 -$\mathrm{OAc}-d_{2}$ while no methylene scrambling was evident in recovered 1-OTs- $\alpha, \alpha-d_{2}$ after 1 acetolysis half-life requires that the ionization step $\left(k_{1}\right)$ to ion pair 9 was rate limiting. (If k_{2} were rate limiting some contribution of a k_{-1} step would have been

Table I. Buffered Acetolysis Data and Activation Parameters

Compd	Temp, ${ }^{\circ} \mathrm{C}$	$10^{5} k_{t}, \mathrm{~s}^{-1 a}$	$\begin{gathered} k_{\mathrm{X}} / k_{\mathrm{H}} \\ \left(25^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \Delta H^{\ddagger} \\ \mathrm{kcal} / \mathrm{mol} \\ \hline \end{gathered}$	$\begin{gathered} \Delta S^{\mp} \\ \mathrm{eu} \\ \hline \end{gathered}$
1 -0Ts ${ }^{\text {b,c }}$	25.0	6.09 ± 0.10	1.0	20.5	-9.2
	35.0	19.3 ± 0.02			
2-OCH3-1-OTs ${ }^{b}$	25.0	27.10 ± 0.05	4.5	20.7	-5.3
	45.0	260 ± 1			
$2-\mathrm{CH}_{3}-1-\mathrm{OTs}^{b}$	25.0	29.8 ± 0.6	4.9	20.5	-5.8
	45.0	281 ± 1			
2-Cl-1-OTs ${ }^{b}$	25.0	$(0.407){ }^{e}$	0.067		
	50.0	9.02 ± 0.01		23.1	-5.7
	70.0	78.2 ± 0.1			
2-Br-1-OTs	25.0	$(0.448)^{e}$	0.074		
	50.0	9.52 ± 0.01		22.8	-6.6
	70.0	80 ± 2			
2-CN-1-OTs	25.0	$(0.0111)^{e}$	0.0018		
	90.0	20.92 ± 0.06		24.3	-8.8
	110.0	128.1 ± 0.4			
$3-\mathrm{OCH}_{3}-1-\mathrm{OTs}^{b}$	25.0	14.3 ± 0.1	2.3	20.0	-9.0
	35.0	43.4 ± 0.1			
	45.0	127.8 ± 0.2			
3-CH3-1-OTs ${ }^{b}$	25.0	11.8 ± 0.2	1.9	20.6	-7.4
	45.0	112 ± 2			
$3-\mathrm{SCH}_{3}-1-\mathrm{OTs}^{\text {b }}$, ${ }^{\text {c }}$	25.0	1.95 ± 0.01	0.32	21.7	-7.4
	35.0	6.61 ± 0.06			
$3-\mathrm{Br}-1-\mathrm{OTs}{ }^{\text {b,c }}$	25.0	$(0.417)^{e}$	0.068		
	35.0	1.58 ± 0.01		23.7	-3.6
	50.0	10.0 ± 0.1			
3-COCH3 $-1-\mathrm{OTs}^{\text {c }}$	25.0	$(0.128){ }^{e}$	0.021		
	50.0	3.16 ± 0.07		24.0	-5.2
	70.0	29.5 ± 0.4			
3-CN-1-OTs	25.0	(0.0422) ${ }^{\text {e }}$	0.0069		
	85.0	30.9 ± 0.1		22.7	-11.6
	105.0	176 ± 5			
3- $\mathrm{NO}_{2}-1-\mathrm{OTs}{ }^{\text {c }}$	25.0	$(0.00552)^{e}$	0.00091		
	70.0	1.36 ± 0.05		24.2	-10.4
	90.0	10.2 ± 0.1			
4-CH3-1-OTs ${ }^{b}$	25.0	11.1 ± 0.1	1.8	20.9	-6.5
	45.0	109 ± 2			
$5(7)-\mathrm{CH}_{3}-1-\mathrm{OTs}^{b}$	25.0	19.5 ± 0.3	3.2	21.2	-4.3
	45.0	198 ± 2			
5(7)-Br-1-OTs	25.0	$(0.773){ }^{e}$	0.13		
	50.0	13.9 ± 0.1		21.5	-9.8
	70.0	104 ± 2			
5-Br-1-OTs	25.0	(0.821) ${ }^{e}$	0.13		
	45.0	8.7 ± 0.1		21.6	-9.2
	65.0	70 ± 1			
5-CN-1-OTs	25.0	$(0.0288){ }^{e}$	0.0047		
	70.4	5.7 ± 0.1		23.1	-11.1
	90.2	38 ± 1			
$6-\mathrm{OCH}_{3}-1-\mathrm{OTs}^{6}$	25.0	23.5 ± 0.6	3.9	20.0	-8.0
	45.0	210 ± 4			
$6-\mathrm{CH}_{3}-1-\mathrm{OTs}{ }^{b}$	25.0	12.4 ± 0.2	2.0	22.4	-1.3
	35.0	43.7 ± 0.6			
6-Br-1-OTs	25.0	$(0.728)^{e}$	0.12		
	50.0	13.1 ± 0.4		21.5	-9.9
	70.0	98.1 ± 0.1			
6-CN-1-OTs	25.0	(0.0689) ${ }^{e}$	0.011		
	70.0	12.3 ± 0.1		22.8	-10.3
	90.0	82 ± 2			
7-Br-1-OTs ${ }^{\text {b }}$	65.0	50.3 ± 0.3			
7-CN-1-OTs	25.0	$(0.0210)^{e}$	0.0034		
	70.3	4.25 ± 0.06		23.2	-11.2
	90.1	28.7 ± 0.3			
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}^{d}$ (11-OTs)	25.0	$\left(9.0 \times 10^{-5}\right)^{e}$			
	110.0	0.987 ± 0.001		24.2	-18.8
	130.0	5.02 ± 0.01			
$\begin{aligned} & p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}^{d} \\ & (\mathbf{1 0 - \mathrm { OTs })} \end{aligned}$	25.0	$\left(5.0 \times 10^{-3}\right)^{e}$			
	75.0	2.01 ± 0.02		24.1	-11.1
	95.0	14.1 ± 0.05			

${ }^{a}$ The values of k_{t} listed are averages of at least duplicate runs and the errors given are maximum deviations from this average value. Standard deviations of individual runs were uniformly small. ${ }^{b}$ Solvolyzed as the $1,3,5$-trinitrobenzene complex. ${ }^{c}$ Titrimetric method used (0.010 M ROTs, 0.012 M KOAc$).{ }^{d}$ Titrimetric method used ($0.005 \mathrm{M} \mathrm{ROTs}, 0.006 \mathrm{M} \mathrm{KOAc}$). ${ }^{e}$ Extrapolated from data at other temperatures.

Table II. Methylene Scrambling in the Buffered Acetolysis of $\mathbf{1 -}$ OTs- $\alpha, \alpha-d_{2}\left(35.0^{\circ} \mathrm{C}\right)$ and $3-\mathrm{NO}_{2}-1-\mathrm{OTs}-\alpha, \alpha-d_{2}\left(90.0^{\circ} \mathrm{C}\right)^{19}$

Compd	Reaction time ($t_{1 / 2}$)	Deuterium content ${ }^{a}$		$\%$ proton content ${ }^{a}$	
		C_{α}	C_{β}	C_{α}	C_{β}
1-OTs- $\alpha, \alpha-d_{2}$	0	1.68	$0.10^{\text {b }}$		
1-OTs- $\alpha, \alpha-d_{2}$	1	1.72	0.06		
1- $\mathrm{AzCH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OAc}$	1			51.1	48.9
1- $\mathrm{AzCH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OAc}$	10			51.5	48.5
3- NO_{2}-1-OTs- $\alpha, \alpha-d_{2}$	0	1.81	0.00		
$3-\mathrm{NO}_{2}-1-\mathrm{OTs}-\alpha, \alpha-d_{2}$	1	1.70	0.11		
$3-\mathrm{NO}_{2}-1-\mathrm{AzCH}_{2}\left(\mathrm{D}_{2}\right)$	1			48.9	51.1
$\mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OAC}$					
$3-\mathrm{NO}_{2}-1-\mathrm{AzCH}_{2}\left(\mathrm{D}_{2}\right)$	10			49.3	50.7
$\mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OAc}$					

${ }^{a}$ The results are the average of duplicate experiments. The errors are considered to be about $\pm 1 \%,{ }^{6}$ This degree of scrambling occurred in preparation of the tosylate ester using the ether- KOH method. ${ }^{21}$
expected leading to methylene scrambling in the recovered tosylate ester.) Further these results establish that ion-pair return, $(1-F) k_{\Delta}$, was not occurring from 9 and only contributes to about 12% of solvolysis processes from 3-NO $\mathrm{NO}_{2}-9$ for the first half-life. Analysis of the product acetates shows no variation in the results from the 1 and 10 half-life experiments.

The F values (fraction of ion pairs going to product) from 1 -OTs and $3-\mathrm{NO}_{2}-1$-OTs are calculated from the deuterium scrambling data in Table II to be 1.0 and 0.81 , respectively, in buffered acetolysis after 1 half-life, assuming no secondary α-deuterium isotope effect in the reaction of $3-\mathrm{NO}_{2}-9-d_{2}$ with solvent. The F value for $3-\mathrm{NO}_{2}$-1-OTs was considered a minimum estimate since the concentration of the salt, KOAc, is constantly being depleted and replaced by the common ion salt, KOTs, as the reaction progresses. KOAc was probably functioning as a special salt in these systems. ${ }^{22,23}$ Thus, we would expect the F value to decrease as the percent reaction increased under the buffered conditions employed.

$$
F=\frac{\% \text { reaction }}{\% \text { reaction }+2(\% \text { label scramble in recovered ROTs })}
$$

This change in direction of the F value is opposite to that observed by Jenny and Winstein ${ }^{24,25}$ in the acetolysis of 2 -p-anisylethyl tosylate ($\mathbf{1 0 - O T s}$) in the presence of the nonconsumed special salt, LiClO_{4}. From their data we calculate that F increases ($F=0.26,0.28$, and 0.33) with increasing percent reaction ($10,13.7$, and 38%, respectively). In their case, the increasing F value probably reflects the rapidly decreasing ratio $\left[\mathrm{R}^{+-} \mathrm{OTs}\right] /\left[\mathrm{LiClO}_{4}\right]$ without substantially increasing the common anion concentration as a function of percent reaction.
Since the reactivities and activation parameters of 3 -NO_{2}-1-OTs and 2-p-anisylethyl tosylate (10-OTs) under buffered acetolysis conditions are nearly the same (Table I), we would expect their F values to also be similar. However, Coke ${ }^{26}$ has assigned $F=0.466 \pm 0.017$ for the acetolysis of 10 -OTs compared to our value of $F=0.81$ for buffered acetolysis of $3-\mathrm{NO}_{2}$-1-OTs. The reason for the apparent inconsistency was revealed by a study of the bưffered acetolysis of $10-\alpha, \alpha-d_{2}$-OTs (0.010 M ROTs, 0.012 M KOAc) at $95.0^{\circ} \mathrm{C}$. The results showed $8 \pm 1 \%$ label scramble in recovered tosylate and $0 \pm 1 \%$ of the k_{s} (solvent displacement) pathway after 50% reaction; $F \sim 0.76$. Unbuffered acetolysis of $\mathbf{1 0 - \alpha , \alpha - d _ { 2 }}$-OTs showed $35 \pm 1 \%$ label scramble in recovered tosylate after 46% reaction at $75.0^{\circ} \mathrm{C}(F \sim 0.40)$, and $35 \pm 1 \%$ label scramble after 50% reaction at $95.0^{\circ} \mathrm{C} .{ }^{25}$ Thus, the agreement of F values in buffered and unbuffered acetolysis was good with
about the same F values for $\mathbf{1 0}$-OTs and $3-\mathrm{NO}_{2}-1$-OTs under buffered acetolysis conditions. Here, as above, we attribute the differences observed in unbuffered vs. buffered acetolysis to a special salt effect by KOAc.

That this special salt effect explanation is probably an oversimplification in comparing derivatives of 1-OTs and those of 2-phenylethyl tosylate (11-OTs) comes from our observations of the dependency of k_{t} on the absolute ROTs/KOAc concentration. For $1-\mathrm{OTs}$, we find the same k_{t} in going from 0.010 M ROTs and 0.012 M KOAc (titrimetric) to 0.0010 M ROTs and 0.0012 M KOAc (conductometric). ${ }^{27}$ The same change of method and concentrations with 3-NO2-1-OTs leads to a $6-7 \%$ reduction in k_{t} at the lower concentrations used. With $\mathbf{1 0 - O T s}$ a smaller concentration change (0.005 M ROTs and 0.006 M KOAc titrimetric) produced a larger, $19 \pm 4 \%$, reduction in k_{t} determined in the conductometric method compared to that from the titrimetric method. While the relative ratios of [ROTs]/[KOAc] and [intermediate ion pairs]/[KOAc] are held constant in these experiments (ignoring a small normal salt effect on the latter ratio), the major change is in the absolute [KOAc] present during solvolysis. One interpretation of these observations is that while KOAc is useful as a special salt in the acetolysis of $\mathbf{1 0 - O T s}$ by decreasing the ion-pair return pathway, $(1-F) k_{\Delta}$, the solvolysis of 1-OTs proceeds without the requirement of such a special salt effect. The acetolysis of $3-\mathrm{NO}_{2} \cdot 1$-OTs shows an intermediate need for the special salt effect. ${ }^{29}$.

Although the NMR integrated side-chain C_{α} and C_{β} proton contents of $1-\mathrm{OAc}-d_{2}$ obtained from the 1 and 10 half-life experiments are probably the same within experimental error (Table II), their reproducibility from a number of runs suggests that these may be the result of a normal secondary α-deuterium isotope effect in the reaction of ion pair 9 to produce acetate product. Along the same lines, the values found for $3-\mathrm{NO}_{2^{-}}$ 1-OAc- d_{2} derived from $3-\mathrm{NO}_{2}$-1-OTs- $\alpha, \alpha-d_{2}$ suggest about $2 \pm 1 \%$ of the k_{s} pathway present in this acetolysis. On the basis of $2 \% k_{\mathrm{s}}$, we calculate $k_{\mathrm{s}}=2 \times 10^{-6} \mathrm{~s}^{-1}\left(90^{\circ} \mathrm{C}\right)$ under these conditions in good agreement with the value reported by Coke^{26} of $k_{\mathrm{s}}=(3.5 \pm 3.1) \times 10^{-6} \mathrm{~s}^{-1}$ for $\mathbf{1 0 - O T s}$ at $90^{\circ} \mathrm{C}$. Since k_{s} has been shown to change little ($\rho \sim-1$) as a function of aryl ring substituent, ${ }^{7,30}$ we conclude that the derivatives of $\mathbf{1 - O T s}$ listed in Table I undergo buffered acetolysis exclusively by the k_{Δ} pathway (exceptions are $2 \% k_{\mathrm{s}}$ for $3-\mathrm{NO}_{2^{-}}$ 1-OTs and possibly $\leq 1 \% k_{\mathrm{s}}$ in cyano derivatives) with little or no ion-pair return involved.

To see the magnitude of the kinetic effect of replacing phenyl by the 1 -azulyl group, a simple comparison of their titrimetric rate constants from Table I, $k_{\mathrm{t}}(1-\mathrm{OTs}) / k_{\mathrm{t}}(11-\mathrm{OTs})=23000$ at $90^{\circ} \mathrm{C}$, is of little value since k_{t} of 11 -OTs is composed of $F k_{\Delta}+k_{\mathrm{s}}$. Using Coke's ${ }^{26}$ values ($F=0.32, k_{\Delta}=12 \times 10^{-7}$ s^{-1} at $90^{\circ} \mathrm{C}$) for $11-\mathrm{OTs}$ and the extrapolated rate constant for 1 -OTs to $90^{\circ} \mathrm{C}\left(3.6 \times 10^{-2} \mathrm{~s}^{-1}\right)$, we find that $k_{F k_{\perp}}(1-$ OTs) $/ k_{F k_{\Delta}}(11-\mathrm{OTs})=94000$.

Substituent Effects and Linear Free Energy Relationships. In the case of electrophilic attack at the 1 position of azulene, e.g., k_{Δ} ionization of $\mathbf{1 - O T s} \rightarrow \mathbf{9}$, canonical resonance contributing structures suggest that the ring 2 and 3 positions are related to ortho and meta positions in a related benzenium ion while the seven-ring 4 to 7 positions are long-range paralike positions. However, quantum mechanical modeling of this process using Pople's CNDO/ 2 method ${ }^{32}$ suggested that the azulene 3 position should be more para- than metalike in its substituent effects since its Δq_{r} was about 50% of the largest Δq_{r} (5 and 7 positions) while the Δq_{r} at the meta position of the related phenyl derivatives was only 16% of the para Δq_{r}. This effect at the azulene 3 position is the result of electron density concentration at this site due to the dipolar character of the azulene ring ($\mu=1.0 \mathrm{D}$) ${ }^{33}$ which is more readily lost as cation 9 is generated.

Figure 1. Plots of the 2-($\odot), 3-(\odot)$, and 6 -substituent (Δ) effect data vs. the YTS σ 's calculated for these three positions (Table Ill).
Table III. Regression Analyses of Buffered Acetolysis Data for 2-, 3-, and 6-Substituted X-1-OTs at $25.0^{\circ} \mathrm{Ca}$

LFER	Calcd parameters	$\mathrm{CC}^{\text {a }}$	$s^{\text {b }}$	F^{c}	No. of points ${ }^{d}$
YTS ${ }^{35}$					
2-X-1-OTs	$\rho=-4.41 \quad r=-0.03$	0.997	0.13	285	6
3-X-1-OTs	$\rho=-3.54 \quad r=-0.09$	0.996	0.13	339	8
6-X-1-OTs	$\rho=-2.91 \quad r=+0.09$	0.999	0.06	506	5
Swain-Lupton ${ }^{36}$					
2-X-1-OTs	$f=-2.64, r=-3.30, \% R=44 \pm 2$	0.998	0.10	444	
3-X-1-OTs	$f=-2.17, r=-2.46, \% R=41 \pm 5$	0.994	0.17	193	8
6-X-1-OTs	$f=-1.69, r=-2.57, \% R=49 \pm 3$	0.997	0.10	197	5
$\sigma_{p}{ }^{\circ} \rho^{35 a}$					
3-X-1-OTs	$\rho^{\circ}=-3.39 \pm 0.14$	0.995	0.14	557	8
6-X-1-OTs	$\rho^{\circ}=-3.03 \pm 0.12$	0.997	0.08	589	5
3-and 6-X-1-OTs	$\rho^{\circ}=-3.31 \pm 0.14$	0.991	0.17	542	12
2-, 3-, and 6-X-1-OTs	$\rho^{\circ}=-3.56 \pm 0.17$	0.984	0.22	466	17

${ }^{a}$ Correlation coefficient. ${ }^{b}$ Standard error of the estimate. ${ }^{c}$ Critical value of the variance ratio test. ${ }^{d}$ The data sets include all substituents listed in Table I at these positions plus H in each correlation.

From the $k_{\mathrm{X}} / k_{\mathrm{H}}$ ratios at $25^{\circ} \mathrm{C}$ in Table I for the $\mathrm{CH}_{3} \mathrm{O}$ (2,3 , and 6 positions) and CH_{3}-substituted derivatives (2 to 7 positions), where 4.5 and 4.9 , respectively, represent the largest rate enhancements of 1-OTs, data correlations with $\sigma_{p}{ }^{+}$ constants ${ }^{34}$ were not to be expected. Our approach was to use the Yukawa-Tsuno-Sawada (YTS) ${ }^{35}$ equation, $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ $=\rho\left[\sigma_{p}{ }^{\circ}+r\left(\sigma_{p}{ }^{+}-\sigma_{p}{ }^{\circ}\right)\right]$, to better define the larger sets of substituent effect data determined at the 2,3 , and 6 positions of 1-OTs. These results are given in Table III. The small values of r determined individually from these three ring positions showed that $\sigma_{p}{ }^{\circ}$ constants would correlate these data sets (see the last correlation in Table III). Plots of these substituent
effects $\left(\log k_{\mathrm{t}}\right.$'s) vs. the calculated YTS σ constants are shown in Figure 1.

The Swain-Lupton correlation ${ }^{36}$ came to the same conclusions as did the YTS except that the field (f) and resonance (r) contributions from these three azulene ring positions are more clearly defined (Table III). These conclusions were also apparent from Taft correlations. ${ }^{37}$ The decreasing field ($2>$ $3>6)$ and resonance $(2>6 \geq 3)$ are as expected from the above discussion of the resonance and quantum mechanical effects.

The divergent ρ 's obtained at these three positions and the excellent statistical data suggest that indeed each of these three

Figure 2. Plot of $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ of X-1-OTs buffered acetolyses $\left(25^{\circ} \mathrm{C}\right)$ vs. $\Delta \mathrm{p} K_{\mathrm{a}} \mathrm{S}$ of X-1-azuloic acids in 50% ethanol $\left(25^{\circ} \mathrm{C}\right)$. The $3-\mathrm{OCH}_{3}$ data were omitted in the regression analysis.
positions is more correctly treated as an individual substituent center. This statement appears to be most true when comparing the $2-\mathrm{X}-1$-OTs data set with the other two sets, but is debatable in the combining of the $3-\mathrm{X}-1-\mathrm{OT}$ and $6-\mathrm{X}-1-\mathrm{OTs}$ sets. This division of the total substituent effect into components relative to the aromatic position has been observed in various systems and reaction types. Other examples include the $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of 1- and 2 -naphthoic acids, ${ }^{37}$ hydrolysis rates of methyl 1- and 2naphthoates, ${ }^{37} \mathrm{p} K_{\mathrm{a}}$ s of 1 - and 2-naphthylammonium, ${ }^{37}$ pyridinium, ${ }^{37}$ quinolinium, ${ }^{37}$ and isoquinolinium cations, ${ }^{37}$ and the solvolytic behavior of 1 -(heteroaryl)- ${ }^{38}$ and 1 -(benzoheteroaryl)ethyl derivatives ${ }^{39}$ bearing substituent groups at various ring positions.

It is of interest to point out that substituent effects on the $\mathrm{p} K_{\mathrm{a}}$ of 1-azuloic acid showed very similar variations in ρ 's at the 2,3 , and 6 positions ${ }^{3}$ to those described above. Those substituent effects were also found to be well correlated with $\sigma_{p}{ }^{\circ}{ }^{35 \mathrm{a}}$ constants. A plot of the substituent effects at these three positions in these two different reactions is shown in Figure 2. The calculated slope of this plot (omitting the $3-\mathrm{OCH}_{3}$ data) was -2.21 (CC 0.996) which is the $\rho_{\text {acetolysis }} / \rho_{\mathrm{p} K_{\mathrm{a}}}$ ratio at each of these three rings sites. On the basis of the data accumulated in these two very different reaction processes, we conclude that substituent effects on reactions occurring at the azulene 1 position will all be reasonably correlated by $\sigma_{p}{ }^{\circ}$ constants. This makes the I-azulyl group a truly "Hammett type" of aromatic ring system. Since steric inhibition of resonance was not found for the 2 substituents in the 1 -azuloic acids $\mathrm{p} K_{\mathrm{a}} \mathrm{s},{ }^{3}$ we can exclude this effect from involvement in the 2-X-1-OTs acetolysis also.

A Single ρ Value in β-Arylethyl Derivative Solvolyses? In developing the FM^{40} and FMMF^{41} by Dewar and modified by Forsyth, ${ }^{42}$ it was assumed that for a given reaction type ρ was to be that found in the phenyl series regardless of the aromatic substrate involved. This generalization appeared to conflict with a generally accepted interpretation of ρ that "the magnitude of ρ should therefore be a measure of the magnitude of the developing charge and of the extent to which it is able to interact with the substituents" ${ }^{43}$ While the first portion of this quote has been adopted by numerous experimentalists (kinetically early vs. late transition state formation), the second part has even eluded the calculations of the theoretician. Johnson and Schofield ${ }^{44}$ recently criticized the point of view that the magnitude of ρ was diagnostic of the extent of charge

Figure 3. Plot of $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$'s of p-X-neophyl brosylate acetolysis vs. 3-X-1-OTs buffered acetolysis. The point for $3-\mathrm{CO}_{2} \mathrm{CH}_{3}$-1-OTs was estimated from its $\sigma_{p}{ }^{\circ}$ value $(0.464)^{35 \mathrm{a}}$ and $\rho=-3.4$.
development in the transition state, i.e., the larger the magnitude of ρ, the later the transition state. ${ }^{45}$

In searching for a β-phenylalkyl arenesulfonate system with which to compare our results of 1-OTs, we felt that the following criteria had to be met: (1) the leaving group should be attached to a primary carbon, and (2) a range of both elec-tron-donating and -withdrawing substituent group effects must be available on the k_{Δ} acetolysis process. With these factors in mind, we were immediately led to consider the 2 -phenyl2 -methyl-1-propyl (neophyl) system. To reduce the errors in extrapolation of the rate constants in these two systems an intermediate temperature, $75^{\circ} \mathrm{C}$, was chosen for this comparison. These rate constants are listed in Table IV.

The similarities of the electron-withdrawing substituents on the buffered acetolysis of 3-X-1-OTs and p-X-neophyl brosylate acetolysis are shown in Figure 3 where the \log ($k_{\mathrm{X}} / k_{\mathrm{H}}$) ratios for these two systems are plotted against one another. The divergent behavior of the electron-donating substituent effects of CH_{3} and especially OCH_{3} are obvious here. This was expected since σ^{+}constants are usually used to correlate the X-neophyl brosylate data ${ }^{46-48}$ while $\sigma_{p}{ }^{\circ}$ constants correlate the $3-\mathrm{X}-1-\mathrm{OTs}$ substituent effects.

It has been pointed out previously that σ^{+}constants overestimate the rate constant of p-methoxyneophyl brosylate ${ }^{356.47 .48}$ which was corrected using a YTS correlation with $r \sim 0.6$. Using this approach we have carried out regression analysis on the data in Table IV in the form of $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ with $\sigma_{p}{ }^{\circ}$ constants for the X-1-OTs sets, $\sigma_{m}{ }^{\circ}$ for m-methylneophyl brosylate, and $\left[\sigma_{p}{ }^{\circ}+0.69\left(\sigma_{p}{ }^{+}-\sigma_{p}{ }^{\circ}\right)\right]^{35}$ for the p-X-neophyl brosylates. The plot of this analysis is shown in Figure 4. When we consider that these data sets come from separate laboratories, the probable errors in certain of the temperature extrapolations, and the facts that for $3-\mathrm{NO}_{2}-1$ OTs $F \sim 0.8$ and that p-nitroneophyl brosylate acetolyzes with 72 and 25% aryl and methyl group rearrangement, respectively, we believe that this correlation is very good. Using the same YTS " σ " determined from the para-substituted neophyl brosylates and $\rho=-3.2$, good agreement is found between calculated $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ ratios and those estimated for $p-\mathrm{Cl}$, $p-\mathrm{CH}_{3}$, and $p-\mathrm{OCH}_{3}$ derivatives of 2-phenylethyl tosylate (11-OTs) $F k_{\Delta}$ acetolysis from Coke's data at $75^{\circ} \mathrm{C} .{ }^{26}$ Therefore, we conclude that a single reaction constant, ρ, applies to aryl participation ($F k_{\Delta}$) in the acetolysis of β arylethyl derivatives where the leaving group is attached to a primary carbon.

Figure 4. Modified Hammett plot of data from Table IV using σ 's as given on the abscissa: \square for $\mathrm{X}-1-\mathrm{OTs}$ and \odot for X -neophyl points.

Table IV. Acetolysis and Buffered Acetolysis Rate Constants of Substituted Neophyl Brosylate and 1-OTs, Respectively, at $75.0^{\circ} \mathrm{C}$

			Other X-Neophyl OBs	$k, \mathrm{~s}^{-1}$	$3-\mathrm{X}-1-\mathrm{OTs}$

a Value of ROTs multiplied by 3.0 to convert to ROBs.

This conclusion has more general implications when we consider the relative reactivity of 1 -OTs compared to 10 -OTs (150 at $75^{\circ} \mathrm{C}$) and 11 -OTs (94000 at $90^{\circ} \mathrm{C}$ for $F k_{\Delta}$). While it is not known if the 2,2-dimethylethylenebenzenium ion is a transition state or an intermediate in acetolysis of $\mathbf{1 0 - O T s}{ }^{7}$ certainly we would expect the solvolytic transition state to be formed earlier from 1-OTs compared to that from 11-OTs based on present theory. If this is true, we must conclude that ρ obtained from substituent effect data cannot yield any information concerning early vs. late formed transition state structures. However, if significantly different ρ values are obtained for the "same reaction type" as aryl groups are varied this could mean that σ constants were poorly chosen, the rate-limiting step had changed, and/or a number of different effects were being observed.

Until this point in the discussion we have largely ignored the 2-X-1-OTs substituent effect data except to point out the ex-
cellent correlation of this data set with $\sigma_{p}{ }^{\circ}$ constants. A similar excellent correlation with $\sigma_{p}{ }^{\circ}$ constants was seen with 2-X1 -azuloic acid $\mathrm{p} K_{\mathrm{a}} \mathrm{s}^{3}$ (Figure 2). This suggests that the relative mix of field and resonance effects by the 2 substituents on 1-OTs buffered acetolysis and 1-azuloic acid ionization is about the same as that of the 3 and 6 substituents in these two reactions of azulene derivatives and that of p-phenyl substituents on those reactions used to define the $\sigma_{p}{ }^{\circ}$ constants. ${ }^{35.37}$ It is then possible to interrelate the σ° constants at ortho positions to those at the para position of benzene derivatives if we assume that the ρ derived from meta and para substituents is the reaction constant for the process. Using $\rho=-3.20$ and 1.45^{3} as the reaction constants for 2-arylethyl arenesulfonate acetolysis and arylcarboxylic acid ionization in 50% ethanol, respectively, the ratio of the azulyl 2 substituents YTS ρ values for the corresponding 1 -azulene derivative reactions is $4.41 / 3.20=$ 1.38 for acetolysis and $2.15 / 1.45=1.48$ for acid ionization.

Table V. Kinetics of Buffered Acetolysis of 1-OTs- $\alpha, \alpha-d_{2}$ and 3-$\mathrm{NO}_{2}-1$-OTs- $\alpha, \alpha-d_{2}$

Compd	Deuterium content, C_{α}	Temp, ${ }^{\circ} \mathrm{C}$	$10^{5} k, \mathrm{~s}^{-1 a}$	$\begin{aligned} & k_{\mathrm{H}} / \\ & k_{\mathrm{D}}{ }^{b} \end{aligned}$
$\begin{aligned} & \text { 1- }-\mathrm{AzCH}_{2} \mathrm{CH}_{2} \mathrm{OTs} . \\ & \text { TNB } \end{aligned}$		35.0	19.43 ± 0.07	1.09
$\begin{aligned} & \text { 1- }-\mathrm{AzCH}_{2} \mathrm{CD}_{2} \mathrm{OTs} . \\ & \mathrm{TNB} \end{aligned}$	1.68 D	35.0	16.80 ± 0.04	
$\begin{gathered} 3-\mathrm{NO}_{2}-1-\mathrm{AzCH}_{2} \\ \mathrm{CH}_{2} \mathrm{OTs} \end{gathered}$		90.0	9.53 ± 0.02	1.08
$\begin{aligned} & 3-\mathrm{NO}_{2}-1-\mathrm{AzCH}_{2}- \\ & \mathrm{CD}_{2} \mathrm{OTs} \\ & \hline \end{aligned}$	1.87 D	90.0	8.46 ± 0.03	

${ }^{a}$ These are averages of duplicate runs. The errors given are the maximum deviations from this average. ${ }^{b}$ These $k_{\mathrm{H}} / k_{\mathrm{D}}$ ratios are corrected to $35^{\circ} \mathrm{C}$ and are per deuterium using the expression $\Delta\left(\Delta G^{\ddagger}\right)$ $=(R T / n) \ln \left(k_{\mathrm{H}} / k_{\mathrm{D}}\right)$, when n is the number of deuterium atoms per molecule.

Thus, the ortho- and para-substituent constants appear to be related by the expression $\sigma_{o}{ }^{\circ} \simeq 1.4 \sigma_{p}{ }^{\circ}$. It should be emphasized that the 2 -substituent effects on 1-azuloic acid $\mathrm{p} K_{\mathrm{a}}$ do not appear to show the steric problems as are seen with ortho substituents in $o-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H} \mathrm{p} K_{\mathrm{a}} \mathrm{s},{ }^{3}$ which negates the use of this expression in many reactions of ortho-substituted benzene derivatives.

Secondary α-Deuterium Isotope Effects on β-Arylethyl Arenesulfonate Solvolyses. With 1-OTs- $\alpha, \alpha \cdot d_{2}$ and $3-\mathrm{NO}_{2}{ }^{-}$ 1-OTs- $\alpha, \alpha-d_{2}$ available, their secondary α-deuterium isotope effects were determined conductometrically and are listed in Table V. Since it had been shown that there was no (or a minor) secondary β-deuterium isotope effect for solvolysis of several 2-arylethyl derivatives, ${ }^{49}$ the smaller $k_{\mathrm{H}} / k_{\mathrm{D}}$ for 3-NO_{2}-1-OTs- $\alpha, \alpha-d_{2}$ was expected as the result of partial methylene scrambling during ion-pair return ($F=0.81$ for $3-\mathrm{NO}_{2}$-1-OTs) from 3-NO \mathbf{N}_{2}-9.

From a study of α-deuterium effects on several β-arylethyl arenesulfonates, Lee ${ }^{50}$ concluded that $k_{\mathrm{H}} / k_{\mathrm{D}}$ increased with increasing aryl participation, i.e., formation of the bridged transition state would be less developed with those substrates forming the more stable ethylenebenzenium ions producing less hindrance by the approaching aryl group on the out-ofplane CH and CD bending vibrations. ${ }^{51}$ However, when the data are corrected for deuterium content and extrapolated to the same temperature (Table VI), the differences do not appear to be significant. ${ }^{52}$ This suggestion appeared to be supported by the solvolysis of 2-ferrocenylethyl tosylate (12-OTs) with $k_{\mathrm{H}} / k_{\mathrm{D}}=1.13$ per deuterium ${ }^{53}$ at $35^{\circ} \mathrm{C}$ since that gave a large rate ratio (3120) relative to 11 -OTs. However, with 1-OTs in 2-arylethyl derivative solvolyses, we find $k_{\mathrm{H}} / k_{\mathrm{D}}=1.09 \mathrm{per}$
deuterium at $35^{\circ} \mathrm{C}$. These and other α-deuterium effects are listed in Table VI.

Thus, it appears that the kinetic secondary α-deuterium isotope effect for aryl participation in 2-arylethyl arenesulfonate solvolyses is $k_{H} / k_{D}=1.10 \pm 0.01$ per deuterium at 35 ${ }^{\circ} \mathrm{C}$ and is independent of the nature of the aryl group. Since this covers a relative reactivity of 10^{5}, a comment on the lack of early vs. late transition states manifesting themselves in the α-deuterium effect is in order. The k_{Δ} solvolysis of β-arylethyl arenesulfonates is categorized as an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ process where the transition state structure can have varying r_{n} and r_{1} dimensions depending on the nature of the aryl group (13). Close proximity of either the entering aryl group or the

13
leaving group to the α-methylene stiffens the $\mathrm{C}_{\alpha}-\mathrm{H}$ and $\mathrm{C}_{\alpha}-\mathrm{D}$ bonds and lowers the observed α-deuterium effect. ${ }^{50-54}$ The constant α-deuterium effect as seen in Table VI means that as r_{n} increases r_{1} decreases in an early (vs. late) solvolytic transition state structure. These changes need not be exactly proportional since this will be accompanied by a smaller hydridization change at C_{α} thus influencing the resulting out-of-plane $\mathrm{C}_{\alpha}-\mathrm{H}$ and $\mathrm{C}_{\alpha}-\mathrm{D}$ bending force constants. Therefore, kinetic secondary α-deuterium isotope effects are not useful in probing the structures of these related solvolytic transition states. The single entry in Table VI which may be unique is that of 2-ferrocenylethyl tosylate (12-OTs) where Fe (not C) participation may be involved during ionization.

Conclusions Given by This Research. Returning to the original seven questions asked in the introductory section of this paper, the following answers are given. (1) Ionization of 1-OTs to ion pair 9 was rate limiting under buffered acetolysis conditions. (2) Ion-pair return from 9 to 1-OTs was of no importance except in the case with strongly electron-withdrawing substituents, e.g., $3-\mathrm{NO}_{2}$-1-OTs, where it was at a maximum of 12% after 1 solvolytic half-life. (3) $\sigma_{p}{ }^{\circ}$ constants ${ }^{35 a}$ sufficed to effect LFER of substituent effects at the ring 2, 3, 5, 6, and 7 positions of 1-OTs buffered acetolysis. (4) Substituent effects at the meta and para positions of neophyl brosylate acetolysis and the 3 and 6 positions of 1-OTs buffered acetolysis were found to give the same correlation ($\rho=-3.2$) albeit with different substituent constants. (5) From the answer to question 4 and the fact that the known data on substituent effects on

Table VI. Kinetic Secondary α-Deuterium Isotope Effects in 2-Arylethyl Arenesulfonate Solvolyses

Compd	Solvolysis conditions	Atoms of D	$\begin{aligned} & k_{\mathrm{H}} / k_{\mathrm{D}} \\ & \text { (obsd) } \\ & \hline \end{aligned}$	$\begin{array}{r} k_{\mathrm{H}} / k_{\mathrm{D}} \\ \text { per } \mathrm{D} \\ \text { at } 35^{\circ} \mathrm{C} \text { a.b } \\ \hline \end{array}$	Ref
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OTs}$ (11-OTs)	HOAC, $93.9{ }^{\circ} \mathrm{C}$	1.83	$1.03{ }^{\text {c }}$		49 a
p- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OTs}(\mathbf{1 0 - O T s}$)	$\mathrm{HCO}_{2} \mathrm{H}, 75.3{ }^{\circ} \mathrm{C} \mathrm{CHC}^{\circ} \mathrm{C}$	1.83 2.00	1.17 1.18	1.10 1.10	49 a
	$\mathrm{HCO}_{2} \mathrm{H}, 50^{\circ} \mathrm{C}$	2.00	1.20	1.10	49b
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHCH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OTs}$	$\mathrm{HOAc}, 75^{\circ} \mathrm{C}$	2.00	1.21	1.11	49 b
	$\mathrm{HCO}_{2} \mathrm{H}, 75^{\circ} \mathrm{C}$	2.00	1.21	1.11	49 b
2,4-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OBs}$	HOAC, $50{ }^{\circ} \mathrm{C}$	1.92	$1.15{ }^{\text {c }}$	$1.07{ }^{\text {c }}$	50
	$\mathrm{HCO}_{2} \mathrm{H}, 25^{\circ} \mathrm{C}$	1.92	1.23	1.11	50
FerCH2 $\mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OTs}$ (12-OTs)	Aq acetone, $30^{\circ} \mathrm{C}$	2.00	1.28	1.13	53
$\mathrm{AzCH}_{2} \mathrm{CH}_{2}\left(\mathrm{D}_{2}\right) \mathrm{OTs}$ (1-OTs)	HOAc-KOAc, $35^{\circ} \mathrm{C}$	1.68	1.16	1.09	This work

[^0]2-phenylethyl tosylate acetolysis were also correlated, we conclude that different ρ values cannot be interpreted as meaning early vs. late transition state structures for a given reaction type. (6) It was further concluded that kinetic secondary α-deuterium isotope effects were of no value in defining early vs. late transition state structures in 2-arylethyl arenesulfonate solvolyses. (7) Our answer to this final question of whether or not the azulene 3 position behaved as a benzene meta position in reactions at the 1 position was that it was variable and depends on the reaction type.

Experimental Section ${ }^{55}$

1-(\mathbf{N}, \mathbf{N}-Dimethylaminomethyl)-4-methylazulene (2). A mixture of $233 \mathrm{mg}(2.28 \mathrm{mmol})$ of $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminomethane, 60 mg (2.0 mmol) of paraformaldehyde, and 4 mL of acetic acid was heated until a clear solution was obtained. Then 2.7 mL of this solution was added to 200 mg (1.4 mmol) of 4 -methylazulene in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled to $0^{\circ} \mathrm{C}$. The mixture was swirled for 5 min and diluted with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The solution was washed with $5-\mathrm{mL}$ portions of 10% hydrochloric acid until they were colorless. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and chromatography over activity 2-3 alumina gave (elution with $\left.\mathrm{CCl}_{4}\right) 57 \mathrm{mg}(29 \%)$ of 4 -methylazulene.
The acidic, aqueous layer was made basic with 10% aqueous NaOH (color changed from light blue to dark blue). The basic, aqueous solution was extracted with two $50-\mathrm{mL}$ portions of ether which when dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated gave a blue oil. Chromatography over activity $2-3$ alumina gave [elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CCl}_{4}$ (1:3)] 14 mg (5%) of I -(N, N-dimethylaminomethyl)-8-methylazulene as a blue oil: $1 R$ (neat film) $2920,2790,1550,1255$, and $1035 \mathrm{~cm}^{-1}$; NMR (CCl_{4}, internal $\mathrm{Me}_{4} \mathrm{Si}$) $\mathrm{T}_{5} 1.6-3.3$ (m, Az H's, 6), $6.19\left(\mathrm{~s}, \mathrm{CH}_{2}, 2\right), 6.77$ ($\mathrm{s}, \mathrm{CH}_{3}, 3$), and $7.80\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{~s}, 6\right.$); vis-UV (cyclohexane) 691 nm (OD $0.243), 627$ (0.644), 603 (0.683), 577 (0.760), 368 (0.058), 343 (0.104), 334 (0.068), 228 (0.967), $282(0.956)$, and 243 (0.482).
Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 135 mg (50%) of 1 -(N, N-dimethylam-inomethyl)-4-methylazulene as a blue oil: IR (neat film) 2980, 2800, $1565,1460,1260$, and $1035 \mathrm{~cm}^{-1}$; NMR (CCl_{4}, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau$ 1.4-3.2 (m, Az H's, 6), $6.18\left(\mathrm{~s}, \mathrm{CH}_{2}, 2\right), 7.16\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$, and 7.82 ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{~s}, 6$); vis-UV (cyclohexane) $694 \mathrm{~nm}(\log \epsilon 2.23), 628$ (2.56), 604 (2.58), 579 (2.63), 361 (3.59), 345 (3.78), 337 (3.69), 288 (4.70), 283 (4.71), and 342 (4.43). For elemental analysis, this compound was converted to the TNB complex. Recrystallization from EtOAcpetroleum ether gave brown needles, $\mathrm{mp} 122-128^{\circ} \mathrm{C}$ dec.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6}: \mathrm{C}, 58.25 ; \mathrm{H}, 4.89$. Found: C, 58.30 ; H, 5.07.

Further elution with ether gave 5 mg (2%) of 1,3 -bis(dimethyla-minomethyl)-4-methylazulene as a blue oil: IR (neat film) 2980, 2780, 1560,1260 , and $1005 \mathrm{~cm}^{-1}$; NMR (CCl_{4}, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$) $1.4-3.3$ (m , Az H's, 5), 6.21 ($\mathrm{s}, \mathrm{CH}_{2}, 4$), 6.79 ($\mathrm{s}, \mathrm{CH}_{3}, 3$), and $7.80\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$'s, 12); vis-UV (cyclohexane) 702 nm (OD 0.219), 635 (0.610), 587 (0.744), 364 (0.039), $348(0.046), 289(0.316), 285(0.313)$, and 243 (0.177).

4-Methyl-1-azulylacetonitrile. To a solution of $135 \mathrm{mg}(0.68 \mathrm{mmol})$ of $\mathbf{2}$ in 5 mL of absolute EtOH was added 1 mL of CH_{3} l. Evaporation of the solvent gave 231 mg (100%) of the quaternary salt. The product crystallized from 95% ethanol as purple needles: $\mathrm{mp}>200^{\circ} \mathrm{C}$; IR (KBr) 2980, 1545, 1395, and $869 \mathrm{~cm}^{-1}$; vis-UV (95% ethanol) 584 nm (sh), 544 ($\log \epsilon 2.73$), 353 (3.53), 338 (3.73), 286 (4.64), and 282 (4.64).

A solution of $348 \mathrm{mg}(1.02 \mathrm{mmol})$ of the above salt and 199 mg (3.06 mmol) of KCN in 25 mL of absolute EtOH was heated under reflux for 40 min . The color changed from violet to blue. Ether (100 mL) was added and the solution was washed with two $100-\mathrm{mL}$ portions of water and dried $\left(\mathrm{MgSO}_{4}\right)$. Chromatography over activity 2-3 alumina gave (elution with $\left.\mathrm{CCl}_{4}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1\right) 161 \mathrm{mg}(87 \%)$ of the desired nitrile as a blue oil: IR (neat film) $2950(\mathrm{C}-\mathrm{H}), 2260(\mathrm{C} \equiv \mathrm{N})$, and $1575 \mathrm{~cm}^{-1}$; NMR (CCl_{4}, internal $\mathrm{Me}_{4} \mathrm{Si}$) $\tau 1.8-3.3(\mathrm{~m}, \mathrm{Az} \mathrm{H}$'s, $6), 6.10\left(\mathrm{~s}, \mathrm{CH}_{2}, 2\right)$, and $7.22\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$.
The nitrile was converted to its TNB complex, and recrystallization from ethyl acetate-petroleum ether gave brown needles: mp 116-117 ${ }^{\circ} \mathrm{C}$; vis-UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 672 \mathrm{~nm}$ (sh), 605 (sh), $568(\log \epsilon 2.67), 351$ (3.46), 342 (3.70), 287 (4.68), and 282 (4.69).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}$: $\mathrm{C}, 57.88 ; \mathrm{H}, 3.58$. Found: $\mathrm{C}, 57.66$; H, 3.90 .
4-Methyl-1-azulylacetic Acid. $\mathrm{KOH}(16 \mathrm{~mL}, 0.6 \mathrm{M}$) in 50% aqueous EtOH was heated under reflux with a nitrogen atmosphere
for 3 h . To this solution was added $172 \mathrm{mg}(0.95 \mathrm{mmol})$ of 4 -methyl1 -azulylacetonitrile in 4 mL of THF. The solution was heated under reflux under a nitrogen atmosphere for 18 h . After cooling, 150 mL of water and 150 mL of ether were added. The basic layer was acidified with $10 \% \mathrm{HCl}$ and extracted with three $100-\mathrm{mL}$ portions of ether. The combined ether layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentration of solvent gave $158 \mathrm{mg}(83 \%)$ of blue solid which was recrystallized from CCl_{4}-petroleum ether to give blue needles of the acid: mp $107-109^{\circ} \mathrm{C} ; 1 \mathrm{IR}(\mathrm{KBr}) 2900\left(\mathrm{OH}\right.$, broad) and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau-0.27\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}, 1\right), 1.5-3.2(\mathrm{~m}$, Az H's, 6), $5.89\left(\mathrm{~s}, \mathrm{CH}_{2}, 2\right)$, and $7.12\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$; vis-UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $623 \mathrm{~nm}(\mathrm{sh}), 547(\log \epsilon 2.64), 358$ (3.50), 340 (3.74), 288 (4.66), and 282 (4.66).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 77.98 ; \mathrm{H}, 6.04$. Found: $\mathrm{C}, 78.04 ; \mathrm{H}$, 6.10.

The original ether layer was washed with three $100-\mathrm{mL}$ portions of water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography over activity 2-3 alumina gave (elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 10 mg of a dark blue oil assigned the structure of 4 -methyl-1-azulylmethyl ethyl ether: IR (neat film) $2850(\mathrm{C}-\mathrm{H})$ and $1080 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$ $\tau 1.43-3.3(\mathrm{~m}, \mathrm{Az}$ H's, 6$), 5.08\left(\mathrm{~s}, \mathrm{CH}_{2}, 2\right), 6.77\left[\mathrm{q}(J=7 \mathrm{~Hz}), \mathrm{CH}_{2}\right.$, 2], $7.11\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$, and 8.78 [till -defined due to impurity ($J=7 \mathrm{~Hz}$), $\left.\mathrm{CH}_{3}, 3\right]$.
Further elution with CHCl_{3} gave a light blue oil assigned the structure of 4-methyl-1-azulylacetamide: 1 R (neat film) 3400 (N-H), $3300(\mathrm{~N}-\mathrm{H})$, and $1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR (CDCl_{3}, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$ $\tau 1.43-3.1(\mathrm{~m}, \mathrm{Az} \mathrm{H} \mathrm{s}, 6), 4.2\left(\right.$ broad singlet, $\left.\mathrm{NH}_{2}, 2\right), 5.93\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$, 2), and 7.08 ($\mathrm{s}, \mathrm{CH}_{3}, 3$).

2-(4-Methyl-1-azulyl)ethanol (4-CH33-1-OH). Sodium borohydride ($228 \mathrm{mg}, 6.0 \mathrm{mmol}$) and $155 \mathrm{mg}(0.78 \mathrm{mmol})$ of 4 -methyl 1 -azulylacetic acid were added under anhydrous conditions to 25 mL of dry THF. The mixture was stirred for 10 min and then cooled to $0^{\circ} \mathrm{C}$. To this solution was added dropwise 3 mL of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in 20 mL of dry THF over a period of 10 min and the reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 15 min . After this time, 10 mL of $10 \% \mathrm{HCl}$ and 100 mL of water were added and the mixture was then extracted with two $150-\mathrm{mL}$ portions of ether. The combined ether extracts were washed with water, $5 \% \mathrm{NaHCO}_{3}$, and again with water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a blue oil which was chromatographed over activity 2-3 alumina which gave (elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 85 mg (59%) of $4-\mathrm{CH}_{3}-1 \cdot \mathrm{OH}$ as an oil: IR (neat film) $3300(\mathrm{OH})$ and $1040 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{O}$); NMR (CCl_{4}, internal $\mathrm{Me}_{4} \mathrm{Si}$) $\tau 1.63$ - $3.3(\mathrm{~m}, \mathrm{Az} \mathrm{H's}, 6), 6.26$ $\left[\mathrm{t}(J=7 \mathrm{~Hz}), \alpha-\mathrm{CH}_{2}, 2\right], 6.85\left[\mathrm{t}(J=7 \mathrm{~Hz}), \beta-\mathrm{CH}_{2}, 2\right], 7.24\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, 3), and 7.48 (s, OH.1).

A 1,3,5-trinitrobenzenc complex was made and recrystallization from ethyl acetate-petroleum ether gave brown needles: mp 128-129 ${ }^{\circ} \mathrm{C}$; vis-UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 623 \mathrm{~nm}(\mathrm{sh}), 582(\log \epsilon 2.62), 361$ (3.52), 346 (3.72), 289 (4.68), and 383 (4.69).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$: $\mathrm{C}, 57.14$: $\mathrm{H}, 4.29$. Found: $\mathrm{C}, 57.24$: H, 4.40.

2-(4-Methylazuly)ethyl Acetate (4- CH_{3}-1-OAc). To 10 mL of pyridine cooled to $0^{\circ} \mathrm{C}$ was added $50 \mathrm{mg}(0.27 \mathrm{mmol})$ of $4-\mathrm{CH}_{3} \cdot 1 \cdot \mathrm{OH}$ and 1 mL of $\mathrm{Ac}_{2} \mathrm{O}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added and the organic layer was washed with $10 \% \mathrm{HCl}$ and water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration and chromatography on basic activity 3-4 alumina yielded (elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 59 mg (95%) of a blue oil. The compound was converted to a TNB complex and crystallization from EtOAc-petroleum ether gave brown needles: $\mathrm{mp} 79-80^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 1740(\mathrm{C}=\mathrm{O})$ and $1240 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O})$: NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 0.71$ ($\mathrm{s}, \mathrm{TNB} \mathrm{H}$'s, 3), $1.63-3.3$ ($\mathrm{m}, \mathrm{Az} \mathrm{H}$'s, 6), $5.65\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{CH}_{2}, 2\right], 6.62\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{CH}_{2}, 2\right], 7.14$ (s. $\mathrm{CH}_{3}, 3$), and $7.97\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$; vis-UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 620 \mathrm{~nm}$ (sh), 680 ($\log \epsilon 2.50$), 360 (3.22), 345 (3.56), 289 (4.55), and 283 (4.56).
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}: \mathrm{C}, 57.13: \mathrm{H}, 4.35$. Found: C, 57.41; H, 4.47.
2-(4-Methyl-1-azulyl)ethyl Tosylate (4-CH3-1-OTs). To a solution of $80 \mathrm{mg}(0.43 \mathrm{mmol})$ of $4-\mathrm{CH}_{3}-1-\mathrm{OH}$ dissolved in 5 mL of dry ether and cooled to $0^{\circ} \mathrm{C}$ was added $82 \mathrm{mg}(0.43 \mathrm{mmol})$ of sublimed tosyl chloride followed by $72 \mathrm{mg}(1.29 \mathrm{mmol})$ of powdered KOH . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 12 h . To this mixture 100 mL of ether was added. The ether layer was washed with three $100-\mathrm{mL}$ portions of water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a blue oil which was chromatographed on activity 2-3 alumina, where $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted the tosylate as an oil. The oil was heated in a sublimation apparatus $\left(25^{\circ} \mathrm{C}, 0.1 \mathrm{~mm}\right)$ to remove the excess tosyl chloride and gave 85 mg (56%) of tosylate. The tosylate was converted to the TNB complex
and recrystallization from ethyl acetate-petroleum ether gave brown needles: $\mathrm{mp} 96.0-96.8^{\circ} \mathrm{C}$; IR (KBr) $1545\left(\mathrm{C}-\mathrm{NO}_{2 \text { asym }}\right), 1340$, and $1165 \mathrm{~cm}^{-1}\left(\mathrm{~S}-\mathrm{O}_{\text {sym }}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 0.80(\mathrm{~s}$, TNB H's, 3), 1.6-3.3 (m, Az H's, 6), 5.60 [t ($J=7 \mathrm{~Hz}$), $\left.\alpha-\mathrm{CH}_{2}, 2\right], 6.59$ [$\left.\mathrm{t}(J=7 \mathrm{~Hz}), \beta-\mathrm{CH}_{2}, 2\right], 7.14\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$, and $7.59\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$; vis$\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 620 \mathrm{~nm}(\mathrm{sh}), 578$ ($\log \epsilon 2.63$), 359 (3.49), 345 (3.75), 288 (4.67), and 283 (4.69).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}: \mathrm{C}, 56.40 ; \mathrm{H}, 4.19$. Found: C, 56.53 ; H, 4.01.

Bromination of Diethyl 6-Aminoazulene-1,3-dicarboxylate (5). Method A. To 50 mg (0.174 mmol) of 5 in 10 mL of dry (distilled from BaO) DMF was added dropwise 31 mg of crude, commerical N bromosuccinimide (NBS) in 10 mL of dry DMF. This mixture was stirred at room temperature for 2 h , diluted with 200 mL of water, and extracted with five $50-\mathrm{mL}$ portions of ether. The combined ethereal extracts were washed with three $100-\mathrm{mL}$ portions of $5 \% \mathrm{HCl}$ and with two $100-\mathrm{mL}$ portions of water. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent volume reduced, and the residue chromatographed on alumina. CHCl_{3} eluted a yellow band and EtOH eluted a narrow, gold-yellow band. The yellow band afforded ca .20 mg (30%) of a compound identified on the basis of the NMR spectrum as diethyl 2-bromo-6-aminoazulene-1,3-dicarboxylate: NMR (Me ${ }_{2} \mathrm{SO}-d_{6}$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.20\left[\mathrm{~d}(J=12 \mathrm{~Hz}), \mathrm{C}_{4.8}\right.$ ring H's, 2], 1.73 (broad $\left.\mathrm{s}, \mathrm{NH}_{2}, 2\right), 3.03$ [d $(J=12 \mathrm{~Hz}), \mathrm{C}_{5,7}$ ring H's, 2], 5.68 [q $(J=7 \mathrm{~Hz})$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4\right]$, and 8.47 [$\left.\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 6\right]$.
Method B. To $115 \mathrm{mg}(0.400 \mathrm{mmol})$ of 5 in 10 mL of dry (distilled from BaO) DMF was added dropwise 35 mg of crude, commercial NBS in 15 mL of dry DMF. This mixture was allowed to stir at room temperature for 2 h as the color changed to a dark yellow-brown. The mixture was diluted with 100 mL of water and extracted with three $50-\mathrm{mL}$ portions of ether. The combined ethereal extracts were washed with four $100-\mathrm{mL}$ portions of water and dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent volume was reduced, and the residue was chromatographed on deactivated (6% water) alumina. A diffuse, yellow band was eluted with 1:1 $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted an orange-yellow band that afforded 127 mg (71%) of diethyl 2,5 -dibromo-6-aminoazu-lene-1,3-dicarboxylate. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded big, yellow plates: mp $191-193{ }^{\circ} \mathrm{C}$; IR (KBr) $2.95(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 3.05$ (s , $\mathrm{N}-\mathrm{H}), 3.14(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 6.00(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, and $9.50 \mu(\mathrm{~s}, \mathrm{C}-\mathrm{O})$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 0.42\left(\mathrm{~s}, \mathrm{C}_{4}\right.$ ring $\left.\mathrm{H}, 1\right), 1.57$ [d ($J_{7.8}=$ 12 Hz), C_{8} ring $\left.\mathrm{H}, 1\right], 1.67$ (broad s, $\left.\mathrm{NH}_{2}, 2\right), 2.78\left[\mathrm{~d}\left(J_{7.8}=12 \mathrm{~Hz}\right)\right.$, C_{7} ring $\left.\mathrm{H}, 1\right], 5.65\left[\mathrm{q}(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4\right.$], and 8.62 [$\mathrm{t}(J$ $\left.=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 6\right] ; \lambda_{\max }(95 \%$ ethanol) $286 \mathrm{~nm}(\log \epsilon 4.21)$, 339 (4.84), 372 (4.19), 392 (4.09), and 430 (3.84) (sh).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{~N}: \mathrm{C}, 43.17 ; \mathrm{H}, 3.40 ; \mathrm{N}, 3.15$. Found: C, 43.35; H, 3.60; N, 3.40 .

Method C. To $165 \mathrm{mg}(0.574 \mathrm{mmol})$ of 5 in 30 mL of CHCl_{3} under a dry, oxygen-free nitrogen atmosphere was added 246 mg (ca. 1.38 mmol) of crude, commercial NBS. The color changed immediately from yellow to red. The mixture was stirred at room temperature for 5 h , the solvent volume reduced, and the residue chromatographed on basic alumina. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted several narrow, diffuse, yellow bands and $1: 1$ ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted a broad, yellow band. Ethanol eluted an orange band. The broad, yellow band afforded 110 mg (37%) of diethyl 2,5,7-tribromo-6-aminoazulene-1,3-dicarboxylate that crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield red prisms: mp $196.5-197.0^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 5.95(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ and $9.69 \mu(\mathrm{~s}, \mathrm{C}-\mathrm{O}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 0.18\left(\mathrm{~s}, \mathrm{C}_{4.8}\right.$ ring H's, 2), $3.50\left(\right.$ broad s, $\left.\mathrm{NH}_{2}, 2\right), 5.57$ [q (J $\left.=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4\right]$, and $8.53\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $6] ; \lambda_{\max }(95 \%$ ethanol) $286 \mathrm{~nm}(\log \epsilon 4.18), 343$ (4.90), and 383 (4.23).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Br}_{3} \mathrm{~N}$: C, 36.67 ; $\mathrm{H}, 2.69 ; \mathrm{N}, 2.67$. Found: C, 36.37; H, $2.71 ;$ N, 2.38.

Method D. To $100 \mathrm{mg}(0.35 \mathrm{mmol})$ of 5 in 30 mL of CHCl_{3} under a continuous, oxygen-free, nitrogen sweep was added dropwise under stirring $125 \mathrm{mg}(0.70 \mathrm{mmol})$ of recrystallized NBS in 10 mL of CHCl_{3} over a $5-10-\mathrm{min}$ period. After 15 min the color had changed from yellow to red, and after 5 additional min the color had changed to orange. Thirty minutes after the start of the initial mixing the color had returned to red. The mixture was then immediately diluted with 100 mL of ice-cold water, extracted with two $100-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent volume was reduced, and the residue was chromatographed on alumina. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted a narrow, diffuse red band, $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ether eluted a yellow band (band 1), and CHCl_{3} eluted a second yellow band (band 2). Each yellow band was a mixture of two compounds, as determined by NMR. The
red band was not examined owing to the small amount of material.
Band 1 was rechromatographed on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A yeilow band (band 1 A) was followed closely by a second yellow band (band (B). Band 1 A afforded 25 mg (14%) of diethyl 2,5,7-tribromo-6-aminoazulene-1,3-dicarboxylate, identical with that identified from method C. Band 1 B afforded 25 mg (16%) of diethyl 5,7-dibromo-6-aminoazulene-1,3-dicarboxylate. Crystallization from CHCl_{3} yielded rhombic, orange crystals: $\mathrm{mp} 221-224^{\circ} \mathrm{C}$; IR (KBr) 5.92 (s , $\mathrm{C}=\mathrm{O}$) and $9.56 \mu(\mathrm{~s}, \mathrm{C}-\mathrm{O}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau-0.08$ ($\mathrm{s}, \mathrm{C}_{4.8}$ ring H's, 2) $1.60\left(\mathrm{~s}, \mathrm{C}_{2}\right.$ ring $\left.\mathrm{H}, 1\right), 3.42$ (broad s, $\mathrm{NH}_{2}, 2$), 5.62 [q $\left.(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4\right]$, and $8.52[\mathrm{t}(J=7 \mathrm{~Hz})$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 6\right] ; \lambda_{\max }(95 \%$ ethanol) $276 \mathrm{~nm}(\log \epsilon 4.23)(\mathrm{sh}), 287$ (4.34), 307 (4.24), 346 (4.84), 369 (4.22) (sh), 380 (4.14) (sh), 395 (3.82], and 448 (3.31).

Band 2 was rechromatographed on deactivated (4.5% water) alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A yellow band (band 2 A) was followed closely by a second yellow band (band 2B). Band 2B afforded 80 mg (51%) of diethyl 2,5-dibromo-6-aminoazulene-1,3-dicarboxylate, identical with that identified from method B. Band 2 A yielded 30 mg (23%) of diethyl 5-bromo-6-aminoazulene-1,3-dicarboxylate (6). Crystallization from ethanol yielded yellow plates: mp 201-203 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 2.96$ ($\mathrm{m}, \mathrm{N}-\mathrm{H}$), $3.08(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 3.18(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 6.02(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, and 9.55 $\mu(\mathrm{s}, \mathrm{C}-\mathrm{O}) ;$ NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau-0.07\left(\mathrm{~s}, \mathrm{C}_{4}\right.$ ring $\left.\mathrm{H}, 1\right)$, 0.67 [d $\left(J_{7,8}=12 \mathrm{~Hz}\right), \mathrm{C}_{8}$ ring $\left.\mathrm{H}, 1\right], 1.63\left(\mathrm{~s}, \mathrm{C}_{2}\right.$ ring $\left.\mathrm{H}, 1\right), 2.95$ [d $\left(J_{7,8}=12 \mathrm{~Hz}\right), \mathrm{C}_{7}$ ring $\left.\mathrm{H}, 1\right], 4.17$ (broad s, $\left.\mathrm{NH}_{2}, 2\right), 5.62$ [q $(J=$ $\left.7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4\right]$, and $8.58\left[(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 6\right]$; $\lambda_{\max }(95 \%$ ethanol) $274 \mathrm{~nm}(\log \epsilon 4.23)(\mathrm{sh}), 286(4.31), 340(4.79)$, 374 (4.23), and 430 nm (3.69) (sh).

Method E. To $200 \mathrm{mg}(0.70 \mathrm{mmol})$ of 5 in 60 mL of CHCl_{3} under a continuous, dry, oxygen-free, nitrogen sweep was added dropwise 62 mg (0.35 mmol) of recrystallized NBS in 20 mL of CHCl_{3} over a $60-\mathrm{min}$ period. This mixture was stirred for an additional 20 min , diluted with 100 mL of water, and extracted with two $150-\mathrm{mL}$ portions of chloroform. The combined, orange extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent volume was reduced, and the residue was chromatographed on deactivated (3% water) alumina. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted two yellow bands. The second yellow band yielded 120 mg of unreacted diethyl $6-\mathrm{ami}-$ noazulene-1,3-dicarboxylate, and the first yellow band afforded 100 mg (39%, 100% net) of diethyl 5-bromo-6-aminoazulene-1,3-dicarboxylate (6) identical with that obtained from method D.

Diethyl 5-Bromoazulene-1,3-dicarboxylate (7). To 404 mg (1.10 mmol) of 6 in 100 mL of dioxane were added 4 drops (ca. 130 mg) of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 120 mg (1.09 mmol) of $\mathrm{H}_{2} \mathrm{Q}$. In two addition funnels were placed separately $1.570 \mathrm{~g}(14.2 \mathrm{mmol})$ of $\mathrm{H}_{2} \mathrm{Q}$ in 40 mL of dry dioxane and $1.69 \mathrm{~g}(14.4 \mathrm{mmol})$ of isoamyl nitrite in 40 mL of dry dioxane. The reaction was carried out and worked up as described above. Hexane was used to extract the product. It was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent volume reduced, and the residue chromatographed on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A single, lavender band eluted that afforded 341 mg (88%) of the title compound. Crystallization from ether yielded violet, granular crystals: mp $115.0-115.5^{\circ} \mathrm{C}$ (lit. ${ }^{56} \mathrm{mp} 125$ ${ }^{\circ} \mathrm{C}$); IR (KBr) $5.90(\mathrm{~s}, \mathrm{C}=\mathrm{O}$), 8.25 (s), and $9.55 \mu(\mathrm{~s}, \mathrm{C}-\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau-0.05$ [d $\left(J_{4,6}=2 \mathrm{~Hz}\right), \mathrm{C}_{4}$ ring H, 1], 0.35 [d $\left(J_{7,8}=10 \mathrm{~Hz}\right), \mathrm{C}_{8}$ ring $\left.\mathrm{H}, 1\right], 1.20\left(\mathrm{~s}, \mathrm{C}_{2}\right.$ ring $\left.\mathrm{H}, \mathrm{I}\right), 1.78$ [broad d of $\mathrm{d}\left(J_{6.7}=10, J_{4.6}=2 \mathrm{~Hz}\right), \mathrm{C}_{6}$ ring H, 1], 2.58 [d of d $\left(J_{7,8}=10\right.$, $\left.J_{6,7}=10 \mathrm{~Hz}\right), \mathrm{C}_{7}$ ring $\left.\mathrm{H}, 1\right], 5.60\left[\mathrm{q}(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4\right]$, and $8.53\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 6\right] ; \lambda_{\max }$ (cyclohexane) 256 nm ($\log \epsilon 4.42$), 267 (4.46), 294 (4.57). 301 (4.62), 306 (4.69), 368 (4.07), 380 (4.10), 534 (2.69), 574 (2.64), and 629 (2.22).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Br}: \mathrm{C}, 54.72 ; \mathrm{H}, 4.31$. Found: C. 54.98: H, 4.40.

Three such reactions were carried out on 5-9-g scale of 6 and the yields of 6 were $75-79 \%$. The other chromatographic fractions were combined and rechromatographed on alumina. $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (9:1) eluted 323 mg of diethyl 2.5 -dibromoazulene-1,3-dicarboxylate and 205 mg of tetraethyl 5.5^{\prime}-dibromo-2,6'-biazulyl-1, $1^{\prime}, 3,3^{\prime}$-tetracarboxylate (14) was eluted with $1: 1 \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 14 was tentatively identified from its NMR spectrum, which showed the characteristic singlet absorption for a $\mathrm{C}_{2} \mathrm{H}$ at $\tau 1.32(1 \mathrm{H})$, and a doublet with further splitting at $\tau 1.72$ characteristic of a $\mathrm{C}_{6} \mathrm{H}(1 \mathrm{H})$, along with two types of ethyl ester protons.

5-Bromoazulene (8). Method A. To $100 \mathrm{mg}(0.284 \mathrm{mmol})$ of 7 in 3 mL of ethanol was added $300 \mathrm{mg}(5.34 \mathrm{mmol})$ of KOH in 2.7 mL of water. This mixture was heated with stirring for 30 min at reflux, transferred to a centrifuge tube, and acidified with 6 M HCl . The resultant precipitate was collected by centrifugation, washed with six
$25-\mathrm{mL}$ portions of water, transferred with acetone into a large sublimation tube, and dried under an air stream.
This solid diacid was heated to $270^{\circ} \mathrm{C}$ (100 Torr) and a blue sublimate formed on the condenser. The sublimate was removed with hexane and chromatographed on alumina. Hexane eluted a single, blue band that afforded 30 mg (51%) of 5 -bromoazulene. Crystallization from 2:1 methanol-water gave blue plates: $\mathrm{mp} 46.0-47.0^{\circ} \mathrm{C}$ (lit. ${ }^{57} \mathrm{mp} 48-50^{\circ} \mathrm{C}$); IR $\left(\mathrm{CCl}_{4}\right)$ no characteristic absorptions; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.38\left[\mathrm{~d}(J=2 \mathrm{~Hz}), \mathrm{C}_{4}\right.$ ring H, 1$], 1.75$ [d ($J=9.5 \mathrm{~Hz}$), C_{8} ring H, 1], 2.03 [$\mathrm{d}\left(J=3.5 \mathrm{~Hz}\right.$), C_{3} ring H, 1], 2.15 [d ($J=3.0 \mathrm{~Hz}$), C_{1} ring H, 1], 2.47-2.83 ($\mathrm{m}, \mathrm{C}_{2,6}$ ring H's, 2), and $3.08\left[\mathrm{t}(J=9.5 \mathrm{~Hz}), \mathrm{C}_{7}\right.$ ring $\left.\mathrm{H}, 1\right] ; \lambda_{\max }(95 \%$ ethanol $) 273 \mathrm{~nm}(\log$ $\epsilon 4.56), 281$ (4.57), 332 (3.43), 342 (3.58), 357 (3.28), 574 (2.27), 596 (2.33), 619 (2.30), 653 (2.26), 680 (2.00) (sh), and 723 (1.84).

Method B. 5 -Bromoazulene-1,3-dicarboxylic acid ($2.38 \mathrm{~g}, 8.1$ mmol), obtained as in method A , and 23.0 g of LiBr in 150 mL of dry DMF were heated under reflux in a N_{2} atmosphere for 5.3 h . The cooled reaction mixture was poured into aqueous NaHCO_{3} and extracted three times with ether, and the combined ether extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the ether gave a blue residue which was dissolved in pentane and chromatographed on alumina. 8 was eluted by this solvent and evaporation gave 1.11 g of $\mathbf{8}$ as blue plates. Some di- and monocarboxylic acids were recovered from the basic extract. These were retreated as above producing 0.17 g of 8 . The total yield of 8 was $1.28 \mathrm{~g}(77 \%)$ identical in all respects with that from method A.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$: C, $58.00 ; \mathrm{H}, 3.41$. Found: C, $58.23 ; \mathrm{H}$, 3.63.

2-(5- and 2-(7-Bromo-1-azulylethyl Acetates (5- and 7-Br-1-OAc). To an ice-cold solution of $1.46 \mathrm{~g}(7.1 \mathrm{mmol})$ of 8 in 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1.86 g of AlCl_{3} (blue to green) followed by 18 mL of a 0.75 M solution of ethylene oxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue color returned). This mixture was poured into 600 mL of ice $-10 \% \mathrm{HCl}$, the layers were separated, and the aqueous layer was extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and twice with ether. The combined extracts were washed once with cold $10 \% \mathrm{HCl}$ and twice with water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The blue organic solution was passed down a column of alumina and 937 mg of 8 was recovered. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOH eluted the product alcohols. Evaporation of the solvent gave a residue which was dissolved in 10 mL of pyridine and 3 mL of $\mathrm{Ac}_{2} \mathrm{O}$. After standing overnight at $4^{\circ} \mathrm{C}$ this mixture was diluted with ether, washed with cold $10 \% \mathrm{HCl}$, then water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was chromatographed on alumina where $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (9:1) eluted a large blue band of $5(7)-\mathrm{Br}-1-\mathrm{OAc}(560 \mathrm{mg}, 27 \%, 76 \%$ net $)$ and $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3)$ eluted 47 mg of a compound believed to be 5-bromoazulyl-1,3bis(hydroxyethyl)diacetate. ${ }^{10}$ The NMR spectrum $\left(\mathrm{CCl}_{4}\right)$ of $5(7)$ -$\mathrm{Br}-1-\mathrm{OAc}$ mixture was characterized by the doublets referred to in the synthesis section and indicated that we had a $55: 45$ mixture of these two isomers.

The combined yields of $5(7)-\mathrm{Br}-1$-OAc from three such reactions were recrystallized from CCl_{4}-hexane. Only the $5-\mathrm{Br}-1$-OAc crystallized which was further recrystallized from hexane: $\mathrm{mp} 80-81^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.66\left[\mathrm{~d}(J=2 \mathrm{~Hz}), \mathrm{C}_{4} \mathrm{H}, 1\right], 1.96$ [d $\left.(J=9 \mathrm{~Hz}), \mathrm{C}_{8} \mathrm{H}, 1\right], 2.1-3.4(\mathrm{~m}, 4), 5.8\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right]$, and $6.75\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}, 2\right]$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Br}: \mathrm{C}, 57.36 ; \mathrm{H}, 4.47$. Found: $\mathrm{C}, ~ 57.37$; H, 4.51
2-(5-Bromo-1-azulyl)ethanol (5-Br-1-0H). A solution of 225 mg (0.77 mmol) of $5-\mathrm{Br}-1-\mathrm{OAc}$ and 1 g of KOH in 2 mL of water and 15 mL of EtOH was stirred for 2 h at ice-bath temperature. Ether and water were added, and the ether layer was separated and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{5}\right)$. Evaporation of the solvent and chromatography of the residue on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CHCl}_{3}$ (1:1) eluted a single blue band containing $170 \mathrm{mg}(88 \%)$ of $5-\mathrm{Br}-1-\mathrm{OH}$, which when recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave large blue plates: $\mathrm{mp} 94-96{ }^{\circ} \mathrm{C}$ dec; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.57\left[\mathrm{~d}(J=2 \mathrm{~Hz}), \mathrm{C}_{4} \mathrm{H}, 1\right]$, $1.87\left[\mathrm{~d}(J=10 \mathrm{~Hz}), \mathrm{C}_{8} \mathrm{H}, 1\right], 2.05-3.45(\mathrm{~m}, 4), 6.15[\mathrm{t}(J=6 \mathrm{~Hz})$, $\left.\mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right]$, and $6.80\left[\mathrm{t}(J=6 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}, 2\right]$; the $\mathrm{O}-\mathrm{H}$ was not defined.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{OBr}$: $\mathrm{C}, 57.39 ; \mathrm{H}, 4.42$. Found: $\mathrm{C}, 57.46$; H, 4.44.

2-(5-Bromo-1-azulyl)ethyl Tosylate (5-Br-1-OTs). To a cold solution of $192 \mathrm{mg}(0.77 \mathrm{mmol})$ of $5-\mathrm{Br}-1-\mathrm{OH}$ in 6 mL of THF were added 153 mg of tosyl chloride and 127 mg of powdered NaOH . After stirring in an ice bath for 8 h , the solvent was evaporated. The blue residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and this solution was passed down a column of
alumina. Evaporation of the solvent from this blue eluate gave 252 $\mathrm{mg}(81 \%)$ of crystalline $5-\mathrm{Br}$-1-OTs which when recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave blue needles: $\mathrm{mp} 104-106^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.56\left[\mathrm{~d}(J=2 \mathrm{~Hz}), \mathrm{C}_{4} \mathrm{H}, 1\right], 2.0\left[\mathrm{~d}(J=9 \mathrm{~Hz}), \mathrm{C}_{8}\right.$ $\mathrm{H}, 1], 2.2-3.5(\mathrm{~m}, 8), 5.7\left[\mathrm{t}(J=8 \mathrm{~Hz}), \mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right], 6.7[\mathrm{t}(J=8 \mathrm{~Hz})$, $\mathrm{C}_{\beta} \mathrm{H}_{2}, 2$], and 7.65 ($\mathrm{s}, \mathrm{CH}_{3}, 3$).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}$ SBr: $\mathrm{C}, 56.30 ; \mathrm{H}, 4.23$. Found: $\mathrm{C}, 56.16$; H, 4.22.
2-(7-Bromo-1-azuly)ethanol (7-Br-1-OH). A solution of 540 mg (1.8 mmol) of $5(7)-\mathrm{Br}-1-\mathrm{OAc}$ (containing about $25 \% 5-\mathrm{Br}-1-\mathrm{OAc}$ by NMR) was hydrolyzed as above in the preparation of $5-\mathrm{Br}-1-\mathrm{OH}$. Workup and alumina chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave three fractions: (1) $92 \% 7-\mathrm{Br}-1-\mathrm{OH}, 8 \% 5-\mathrm{Br}-1-\mathrm{OH}$; (2) $87 \% 7-\mathrm{Br}-1-\mathrm{OH}$, $13 \% 5-\mathrm{Br}-1-\mathrm{OH}$; and (3) $76 \% 7 \cdot \mathrm{Br}-1-\mathrm{OH}, 24 \% 5-\mathrm{Br}-1-\mathrm{OH}$. The total weight was 302 mg . A final fraction containing 57:43 7- and $5-\mathrm{Br}$ -1-OH (144 mg) was also obtained. Rechromatography on alumina showed the first five fractions to be pure $7-\mathrm{Br}-1-\mathrm{OH}$ by NMR spectral analysis. Recrystallization produced clusters of green needles, mp $63-66{ }^{\circ} \mathrm{C}$, of $7-\mathrm{Br}-1-\mathrm{OH}: \mathrm{NMR}\left(\mathrm{CCl}_{4}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.60$ [d (J $\left.=2 \mathrm{~Hz}), \mathrm{C}_{8} \mathrm{H}, 1\right], 2.0\left[\mathrm{~d}(J=9 \mathrm{~Hz}), \mathrm{C}_{4} \mathrm{H}, 1\right], 2.15-3.5(\mathrm{~m}, 4), 6.1$ [$\left.\mathrm{t}(J=6 \mathrm{~Hz}), \mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right]$, and $6.75\left[\mathrm{t}(J=6 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}, 2\right]$; the $\mathrm{O}-\mathrm{H}$ was not defined.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{1 ।} \mathrm{OBr}$: C, 57.39; H. 4.42. Found: C, 57.17; H, 4.41.

2-(7-Bromo-1-azulyl)ethyl Tosylate (7-Br-1-OTs). 7-Br-1-OH (55 $\mathrm{mg}, 0.22 \mathrm{mmol}$) was treated as in the preparation of $5-\mathrm{Br}-1-\mathrm{OTs}$. Chromatographic separation gave a blue oil which was purified as its TNB complex. Recrystallization of this complex from EtOAc-hexane gave gold-brown needles: $\mathrm{mp} 87.8-88.1^{\circ} \mathrm{C}$; NMR (CDCl_{3}, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.76\left[\mathrm{~d}(J=2 \mathrm{~Hz}), \mathrm{C}_{8} \mathrm{H}, 1\right], 1.98\left[\mathrm{~d}(J=9 \mathrm{~Hz}), \mathrm{C}_{4} \mathrm{H}, 1\right]$, 2.1-3.4 (m, 4), 5.7 [t $\left.(J=8 \mathrm{~Hz}), \mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right], 6.7\left[\mathrm{t}(J=8 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}\right.$, 2], and $7.65\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$.
Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{9} \mathrm{~N}_{3} \mathrm{SBr}$: C, 48.55 ; H, 3.26. Found: C, 48.50; H, 3.30 .

2-(5-Cyano-1-azulyl)ethanol ($\mathbf{5}-\mathrm{CN}-1-\mathbf{O H}$). A solution of 250 mg (0.85 mmol) of $5-\mathrm{Br}-1-\mathrm{OAc}$ and $115 \mathrm{mg}(1.3 \mathrm{mmol})$ of CuCN in 20 mL of dry DMF was heated under reflux and an N_{2} atmosphere for 9 h . After cooling 75 mL of $\mathrm{C}_{6} \mathrm{H}_{6}$ was added. This mixture was washed with dilute aqueous NaCN and three times with water, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). After solvent evaporation the blue, oily residue was chromatographed in alumina where $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted a small blue band, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluted a large blue band, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ (95:5) eluted a small green band followed by a small blue band. The first band yielded 20 mg of $5-\mathrm{Br}-1-\mathrm{OAc}$. The large second band gave 160 mg (79%) of $5-\mathrm{CN}-1-\mathrm{OAc}$ which crystallized from CCl_{4}-hexane as dark blue needles: $\mathrm{mp} 89-89.5{ }^{\circ} \mathrm{C}$; NMR (CDCl_{3}, internal $\mathrm{Me}_{4} \mathrm{Si}$) τ 1.5-3.1 (m, 6), 5.63 [t ($J=7 \mathrm{~Hz}$), $\left.\mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right], 6.6\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{\beta}\right.$ $\mathrm{H}_{2}, 2$], and 8.0 (s, $\mathrm{CH}_{3}, 3$).

Hydrolysis of 5-CN-1-OAc (200 mg) to $5-\mathrm{CN}-1-\mathrm{OH}$ was carried out above as in the preparation of $5-\mathrm{Br}$-1-OH. Chromatography on activity 2 alumina eluted a single large band with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ (99:1). From this eluent was obtained $150 \mathrm{mg}(90 \%)$ of $5-\mathrm{CN} \cdot 1-\mathrm{OH}$ which when crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CCl}_{4}$ gave greenish-blue plates: $\mathrm{mp} 104.7-105.2^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.5-3.2(\mathrm{~m}$, $6), 4.1\left[\mathrm{t}(J=6 \mathrm{~Hz}), \mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right], 4.7\left[\mathrm{t}(J=6 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}, 2\right]$, and 8.1 ($\mathrm{s}, \mathrm{OH}, 1$).

Anal. Calce for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 79.16 ; \mathrm{H}, 5.62$. Found, $\mathrm{C}, 78.96$; H, 5.68.

2-(5-Cyano-1-azulyl)ethyl Tosylate (5-CN-1-OTs). $5-\mathrm{CN}-1-\mathrm{OH}$ ($155 \mathrm{mg}, 0.79 \mathrm{mmol}$) was converted to $5-\mathrm{CN}-1-\mathrm{OTs}$ as per the procedure for 5 -Br-1-OTs. $5-\mathrm{CN}-1$-OTs was isolated in 89% yield along with 6% recovery of 5-CN-1-OH. The tosylate was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as blue plates: $\mathrm{mp} 106.3-107{ }^{\circ} \mathrm{C}$; NMR (CDCl_{3}. internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.6-3.2(\mathrm{~m}, 10), 5.65\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{c} \mathrm{H}_{2}, 2\right] .6 .6$ [$\left.\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}, 2\right]$, and $7.6\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 68.35 ; \mathrm{H}, 4.88$. Found: C. 68.28: H, 4.91 .
2-(7-Cyano-1-azulyl)ethyl Tosylate (7-CN-1-OTs). 7-Br-1-OAc (117 mg) was converted to $7-\mathrm{CN} \cdot 1$-OAc in 88% yield as in the preparation of 5-CN-1-OAc: NMR $\left(\mathrm{CCl}_{4}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \tau 1.6-3.2$ (m. $6), 5.65\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{\alpha} \mathrm{H}_{2}, 2\right], 6.65\left[\mathrm{t}(J=7 \mathrm{~Hz}), \mathrm{C}_{\beta} \mathrm{H}_{2}, 2\right]$, and $8.0\left(\mathrm{~s}, \mathrm{CH}_{3}, 3\right)$. Hydrolysis of the acetate to $7-\mathrm{CH}-1-\mathrm{OH}$ as per the preparation of $5-\mathrm{CN}-1-\mathrm{OH}$ gave the alcohol in a quantitative yield which when recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave green needles, $\mathrm{mp} 61-64.5^{\circ} \mathrm{C}$. From $60 \mathrm{mg}(0.31 \mathrm{mmol})$ of $7-\mathrm{CN}-1-\mathrm{OH}$ was obtained $50 \mathrm{mg}(46 \%)$ of $7-\mathrm{CN}-1-\mathrm{OTs}$ as per the procedure for 5 -
$\mathrm{CN}-1-\mathrm{OH} \rightarrow 5-\mathrm{CN}-1-\mathrm{OTs}$. $7-\mathrm{CN}-1-\mathrm{OT}$ was recrystallized from CCl_{4} as clusters of green needles, $\mathrm{mp} 106.5-110^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 68.35 ; \mathrm{H}, 4.88$. Found: $\mathrm{C}, 68.55$; H, 4.96 .
Kinetics. The titrimetric (sealed ampule) and conductometric methods used were those previously discussed. ${ }^{5,17}$
Deuterated Compounds. 1-OH- $\alpha, \alpha-d_{2}$ was prepared using NaBD_{4} (Merck Sharp and Dohme, $98 \% \mathrm{D}$) in the $\mathrm{B}_{2} \mathrm{D}_{6}$ reduction of 1 -azulylacetic acid. ${ }^{9} 3-\mathrm{NO}_{2}-1-\mathrm{OH}-\alpha, \alpha-d_{2}$ was prepared by mild nitration [$\mathrm{C}\left(\mathrm{NO}_{2}\right)_{4}$ in pyridine] of $\mathbf{1 - O H}-\alpha, \alpha-d_{2},{ }^{9}$ Both labeled alcohols were converted to their tosylate esters by the method given. ${ }^{9}$
Both alcohols were analyzed by mass spectrometry for total deuterium content. Average of multiple NMR integrations of these two methylene regions gave the total deuterium contents in excellent ($\pm 1 \%$) agreement with the mass spectral analysis; the individual C_{α} and C_{β} deuterium contents from the NMR analyses are given in Table 11. NMR analysis was used exclusively for the tosylates and acetates. Checks were determined using tosylate and acetate CH_{3} groups as internal standards and agreement was always excellent ($\pm 1 \%$).
Structures Used in CNDO/2 Calculations Listed in Table IV. The azulene ring geometry used in 1 -ethylazulene and in the ethylene-$1-$ azulenium ion (cation in ion pair 9) was that employed in ab initio calculations ${ }^{58}$ taken from x-ray crystallographic studies. ${ }^{59}$ The geometry of the spiro three-membered ring was that found in spiro[2.4]-hepta- 4,6 -diene. ${ }^{60}$ All C 's in 1 -ethylazulene and ethylbenzene were in the same plane. In 1-ethylazulene the side-chain $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ and ring $\mathrm{C}_{1}-\mathrm{C}_{2}$ bonds were syn, $\mathrm{C}_{8}-\mathrm{H}$ bisected the $\mathrm{H}-\mathrm{C}_{\alpha}-\mathrm{H}$ angle, and $\mathrm{C}_{\beta} \mathrm{H}_{3}$ was in a staggered conformation relative to $\mathrm{C}_{\alpha} \mathrm{H}_{2}$. Bond lengths of $1.505 \AA$ for the $\mathrm{Ar}-\mathrm{C}_{\alpha}, 1.537 \AA$ for the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$, and $1.08 \AA$ for the $\mathrm{C}-\mathrm{H}$ bonds were used. These structures were not geometry minimized.

Acknowledgments. The authors wish to thank the National Science Foundation (GP-7818, GP-10691) and Kansas State University, Bureau of General Research, for their financial support, and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for an ACS-PRF Graduate Fellowship to J.R.C., 1968-1969. We are also indebted to Dr. G. E. Davis for some of the conductance rate data, Professor R. G. Cooks for the mass spectral determinations, Professor K. Conrow for untiring aid with the computer programs and stimulating discussions, Professor P. v. R. Schleyer for discussions of some of the data, and Kansas State University for computer time.

References and Notes

(1) (a) For part 13 see R. N. McDonald, R. R. Reitz, and J. M. Richmond, J. Org. Chem., 41, 1822 (1976). (b) A portion of this work was communicated in R. N. McDonald and J. R. Curtis, J. Am. Chem. Soc., 93, 2530 (1971).
(2) R. N. McDonald and R. R. Reitz, J. Org. Chem., 37, 2703 (1972).
(3) R. N. McDonald, R. R. Reitz, and J. M. Richmond, J. Org. Chem., 41, 1822 (1976).
(4) R. N. McDonald and J. M. Richmond, J. Org. Chem., 40, 1689 (1975).
(5) R. N. McDonald, N. L. Wolfe, and H. E. Petty, J. Org. Chem., 38, 1106 (1973).
(6) R. N. McDonald, H. E. Petty, N. L. Wolfe, and J. V. Paukstelis, J. Org. Chem., 39, 1877 (1974).
(7) For a review on this topic see C. J. Lancelot, D. J. Cram, and P. V. R. Schleyer in "Carbonium lons', Vol. 3, G. A. Olah and P. v. R. Schleyer, Ed., Wiley-Interscience, New York, N.Y., 1972.
(8) Formation of ethylenebenzenium ion in the gas phase is also known; e.g. see C. Koppel and F. W. McLafferty, J. Am. Chem. Soc., 98, 8293 (1976).
(9) R. N. McDonald, J/M. Richmond, J. R. Curtis, H. E. Petty, and T. L. Hoskins, J. Org. Chem., 41, 1811 (1976).
(10) R. N. McDonald and H. E. Petty, J. Org. Chem., 37, 2957 (1972).
(11) Use of the $5(7)$ - in the identification of $5(7)-\mathrm{CH}_{3}-1-\mathrm{OH}$ is to indicate that this is a mixture of the $5-\mathrm{CH}_{3}$ - and $7-\mathrm{CH}_{3}-1-\mathrm{OH}$ isomers.
(12) A. G. Anderson, R. G. Anderson, and T. S. Fujita, J. Org. Chem., 27, 4535 (1962).
(13) We thank N. L. Wolfe for the synthesis of 4-Me-1-OTs.
(14) T. Nozoe, K. Takase, and M. Tada, Bull. Chem. Soc. Jpn., 38, 247 (1965).
(15) R. N. McDonald and J. M. Richmond, J. Chem. Soc., Chem. Commun., 605 (1973).
(16) P. R. Wells and P. G. E. Alcorn, Aust. J. Chem., 16, 1108 (1963). See also L. M. Jackman and S. Sternhell, 'Application of NMR Spectroscopy in

Organic Chemistry", Vol, 5, 2nd ed, Pergamon Press, Elmstord, N.Y., 1969, p 206.
(17) R. N. McDonald and G. E. Davis, J. Org. Chem., 38, 138 (1973).
(18) E. Grovenstein and F. C. Schmalstieg, J. Am. Chem. Soc., 89, 5084 ${ }^{(1967)}$.
(19) A combination of NMR and mass spectrometry was used to determine the C_{α} and C_{β} deuterium contents in the deuterated compounds. 1-OTs- $\alpha, \alpha-d_{2}$ is known to rearrange by methylene scrambling in the mass spectrometer while $1-\mathrm{OH}-\alpha, \alpha-\alpha_{2}$ is stable. ${ }^{20}$ The agreement between the two methods was excellent.
(20) R. G. Cooks, R, N. McDonald, J. R. Curtis, and H. E. Petty, Org. Mass. Spectrom., 5, 785 (1971).
(21) K. B. Wiberg and A. J. Ashe, J. Am. Chem. Soc., 90, 63 (1968).
(22) S. Winstein, P. E. Klinedinst, and G. C. Robinson, J. Am. Chem. Soc., 83, 885 (1961), reported special salt effects by $(n-\mathrm{Bu})_{4} \mathrm{~N}^{+-}$OAc and LiOAc in acetolyses of 1-anisyl-2-propyl tosylate and 3-anisyl-2-butyl brosylate, respectively.
(23) We believe that determination of F values in the presence of such perturbing effects is best accomplished practically at about 1 solvolytic half-life.
(24) E. F. Jenny and S. Winstein, Helv. Chim. Acta, 41, 807 (1958).
(25) Jenny and Winstein ${ }^{24}$ reported that unbuffered acetolysis of 18- $\alpha-{ }^{14} \mathrm{C}$ OTs (0.050 M ROTs) gave 38% label scramble after 38% reaction ($F=0.33$) which was reduced to 5% after 49% reaction ($F=0.83$) by addition of $0.010 \mathrm{M} \mathrm{LiClO}_{4}$ at $75.0^{\circ} \mathrm{C}$. The disagreement in the scrambling data from the two methods at $75.0^{\circ} \mathrm{C}$ in the absence of added salt is not understood.
(26) M. G. Jones and J. L. Coke, J. Am. Chem. Soc., 91, 4284 (1969).
(27) Generally, agreement in rate constants determined by these two methods has been excellent with the conductometric k_{1} about 1% larger than the titrimetric k_{i} in the absence of special effects. ${ }^{17.28}$
(28) B. L. Murr and V. J. Shiner, J. Am. Chem. Soc., 84, 4672 (1962), have arrived at a similar conclusion.
(29) This should be reflected in a larger F value for $3-\mathrm{NO}_{2}-1$-OTs compared to that of $10-0 \mathrm{Ts}^{26}$ in unbuffered acetolysis. However, we cannot test this point with $3-\mathrm{NO}_{2}-1-\mathrm{OTs}$ owing to its ready protonation by strong acids.
(30) (a) M. D. Bentley and M. J. S. Dewar, J. Am. Chem. Soc., 92, 3996 (1970); (b) J. M. Harris, F. L. Schadt, P. v. R. Schleyer, and C. J. Lancelot, Ibid., 91, 7508 (1969).
(31) Since the temperature extrapolation for 1-OTs is only determined from two points with a $10^{\circ} \mathrm{C}$ temperature difference, this rate ratio must be considered approximate.
(32) D. A. Dobash, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Ind., No. 141.
(33) E. Heilbronner in "Non-Benzenoid Aromatic Compounds' ', D. Ginsburg, Ed., Interscience, New York, N.Y., 1959.
(34) H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 80, 4980 (1958).
(35) (a) Y. Yukawa, Y. Tsuno, and M. Sawada, Bull. Chem. Soc. Jpn., 45, 1198 (1972): (b) ibid., 39, 2274 (1966).
(36) C. Swain and E. Lupton, J. Am. Chem. Soc., 90,4328 (1968).
(37) P. Wells, S. Ehrenson, and R. Taft, Prog. Phys. Org. Chem., 6, 147 (1968).
(38) D. A. Forsyth and D. S. Noyce, Tetrahedron Lett., 3893 (1972).
(39) D. S. Noyce and R. W. Nichols, J. Org. Chem., 37, 4306 (1972).
(40) M. J. S. Dewar and P. J. Grisdale, J. Am. Chem. Soc., 84, 3548 (1962).
(41) M. J. S. Dewar, R. Golden, and J. M. Harris, J. Am. Chem. Soc., 93, 4187 (1971).
(42) D. A. Forsyth, J. Am. Chem. Soc., 95, 3594 (1973).
(43) J. E. Leffler and E. Grunwald, 'Rates and Equilibria of Organic Reactions'", Wiley, New York, N.Y., 1963, p 177.
(44) C. D. Johnson and K. Schofield, J. Am. Chem. Soc., 95, 270 (1973).
(45) See R. N. McDonald and J. M. Richmond, J. Chem. Soc., Chem. Commun., 333 (1974), for a summary of related information on the molecular chlorination of $\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{5}$ and 2 -X-thiophenes.
(46) A. H. Fainberg and S. Winstein, J. Am. Chem. Soc., 78, 2763 (1956).
(47) R. Heck and S. Winstein, J. Am. Chem. Soc., 79, 3432 (1957).
(48) H. Tanida, T. Tsuji, H. Ishitobi, and T. Irie, J. Org. Chem., 34, 1086 (1969).
(49) (a) W. H. Saunders. S. Asperger, and D. H. Edison, J. Am. Chem. Soc., 80, 2421 (1958); (b) W. H. Saunders and R. Glaser, ibid., 82, 3586 (1960).
(50) C. C. Lee and L. Noszko, Can. J. Chem., 44, 2491 (1966).
(51) See A. Streitwieser, R. H. Jagow, R. C. Fahey, and S. Suzuki, J. Am. Chem. Soc., 80,2326 (1958), for a discussion of the origin of α-deuterium effects.
(52) A similar conclusion was reached by D. E. Sunko and S. Borcic in "Isotopes in Chemical Reactions'', C. J. Collins and N. S. Bowman, Ed., Van Nos-trand-Reinhold, Princeton N.J., 1970, pp 193-195.
(53) M. J. Nugent, R. E. Carter, and J. H. Richards, J. Am. Chem. Soc., 91, 6145 (1969).
(54) A. Streitwieser, '"Solvolytic Displacement Reactions", McGraw-Hill, New York, N.Y., 1962, pp 174-175.
(55) All melting points were taken on a Kofler hot stage and are uncorrected. Spectra were determined on commercial instruments (IR, Perkin-Elmer 137; NMR, Varian A-60 or T-60; UV-vis, Cary 11). Alcoa F-20 alumina was used unless otherwise noted. It was assumed to be activity 1 as taken from the can. Activity $2-3$ alumina was made by adding $3 \% \mathrm{H}_{2} \mathrm{O}$ and activity $4-5$ was made by adding $7 \% \mathrm{H}_{2} \mathrm{O}$. Woelm alumina was deactivated as described on the label.
(56) T. Nozoe and S. Ito, Fortschr. Chem. Org. Naturst., 19, 33 (1961).
(57) S. Matsumura, Chem. Pharm. Bull., 10, 1024 (1962).
(58) R. J. Buenker and S. D. Peyerimhoff, Chem. Phys. Lett., 3, 37 (1969).
(59) A. W. Hansen, Acta Crystallogr., 19, 19 (1965).
(60) J. F. Chiang and C. F. Wilcox, J. Am. Chem. Soc., 95, 2885 (1973).

[^0]: ${ }^{a}$ Corrected using the equation $\Delta\left(\Delta G^{\ddagger}\right)=(R T / n) \ln \left(k_{\mathrm{H}} / k_{\mathrm{D}}\right)$ where n is the number of deuterium atoms per molecule. ${ }^{b}$ Probable errors are about $\pm 0.01 .^{c}$ These low $k_{\mathrm{H}} / k_{\mathrm{D}}$ ratios are due to solvent displacement $\left(k_{\mathrm{s}}\right)$ and methylene scrambling from ion-pair return $\left[(1-F) k_{\Delta}\right]$ processes with the substrate under these conditions.

